Чем шар отличается от сферы?
Чем шар отличается от сферы?
Для получения грамотного ответа на вынесенный в заголовок вопрос читателю статьи потребуется хорошенько напрячь свои способности к абстрактному мышлению и как следует углубиться в определённые разделы математики, что ему доводилось изучать в школе. А для стимуляции воображения нелишним будет напомнить, что «Образование есть то, что остаётся после того, когда забывается всё, чему нас учили» (авторство фразы приписывается А.Эйнштейну).
Небольшое погружение в один из разделов математики
Для начала потребуется вспомнить о существовании науки геоме́трии (в несколько вольном переводе с греческого это слово означает «землемеренье») — обособленном разделе математики, специализирующемся на изучении пространственных структур, их отношений между собой и различных возникающих из этого обобщений. Важно, что несмотря на подобное «приземлённое» происхождения названия эта наука оперирует сугубо абстрактными понятиями, которые в привычном нам мире не существуют в прямом физическом воплощении.
Одно из таких базовых понятий — это геометрическая точка. Напрягите своё воображение: в отличие от «точки карандашом», «точки от булавки» и так далее эта точка представляет из себя полностью абстрактный объект в воображаемом пространстве без каких-либо измеримых характеристик типа «толщины», «цвета» и так далее (математики любят при этом произносить словосочетание «нульмерный объект»). В принципе, всё остальное в геометрии будет далее определяться исходя именно из этой абстракции.
Следующее нужно для дальнейших рассуждений понятие — это «ритуальная» математическая фраза «геометри́ческое ме́сто то́чек» (ГМТ). C её помощью описывается некоторое множество (совокупность) точек, подпадающих под определённое отношение (свойство) — таким образом задаётся «геометрическая фигура». Пример: сфе́ра (от древнегреческого σφαῖρα, изначально обозначающего мяч/шар) — это геометрическое место таких точек пространства, которое можно описать как равноудалённое (находящееся на строго одном расстоянии) от некоторой заданной точки, обычно называемой «центром сферы».
Расстояние же от центра сферы до этого ГМТ принято называть «радиусом сферы». Во время всех этих манипуляций важно продолжать помнить, что сфера — понятие более эфемерное, чем даже всем привычный и знакомый мыльный пузырь: у любого мыльного пузыря всё-таки есть вполне ощутимая стенка из водно-мыльной плёнки микроскопической толщины, которую можно физически измерить (и даже проткнуть), а у сферы — нет!
Сфера и радиус сферы
Теперь обратимся к определению шара: под шаром понимается совокупность всех таких точек пространства, что находится от определённой точки (центра шара) на расстоянии, не большем заданного (радиуса шара). Иначе говоря, шар является «геометрическим телом» — тем, что согласно первичному определению Евклида «имеет длину, ширину и глубину» (в современных учебниках это определение менее наглядно: «часть пространства, ограниченная своей образуемой формой»).
Попутно отметим, что использованные здесь способы задания сферы и шара через центр и радиус — не единственные: например, задание сферы/шара в пространстве можно выполнить посредством вращения окружности, круга и т.д. (глубоко заинтересовавшимся этим вопросом настоятельно рекомендуется ознакомиться с отдельным разделом геометрии под названием «Фигуры и тела вращения», поскольку это часто применяемый способ задания самых различных геометрических фигур и тел в пространстве).
Резюме
И шар, и сфера являются абстрактными геометрическими объектами (геометрическими фигурами), задаваемыми через некоторое геометрическое место точек пространства — например, с помощью понятия центра шара/сферы и радиуса шара/сферы. Однако только шар является полноценным геометрическим телом, поскольку включает в себя не только описание ограничивающей его поверхности, но и всей той части пространства, что в себя эта поверхность заключает. С такой точки зрения сфера — лишь внешняя абстрактная граница (поверхность) задаваемого в пространстве шара.
Ещё важно помнить, что лишь используемое по умолчанию определение «замкнутый шар» включает в себя эту границу, в случае же её исключения получается совершенно новое геометрическое тело — «открытый шар».
Сфера и шар
Урок 52. Геометрия 9 класс ФГОС
В данный момент вы не можете посмотреть или раздать видеоурок ученикам в личном кабинете
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно его приобрести.
Получите невероятные возможности
Конспект урока «Сфера и шар»
На этом уроке мы рассмотрим понятия сферы и шара. Дадим их определения. Назовем некоторые из элементов сферы и шара. А также узнаем, как находят объем шара и площадь сферы.
Итак, рассмотрим понятия сферы и шара. Нас окружают различные тела. Формы предметов окружающего мира очень разнообразны. Среди них встречаются так называемые «круглые тела». Особое место среди круглых тел занимает шар.
Итак, шар – это геометрическое тело. Форму, близкую к форме шара, имеют арбуз, апельсин, планеты. Некоторые архитектурные сооружения.
Декоративным растениям также придают форму шара.
Поверхность шара называют сферой. Можно сказать, что сфера – это как-бы оболочка или граница шара. Как окружность, есть граница круга, так и сфера – это граница шара. Представление о сфере дают полые круглые предметы, например, футбольный и теннисный мяч, мыльные пузыри или, ставший в наше время популярным видом отдыха, «аквазорбинг». Зорб дает представление о сфере.
Чтобы уяснить разницу между понятиями шар и сфера, давайте внимательно посмотрим на рисунок.
Перед вами изображены воздушный шар и бильярдный шар. Оба этих предмета называют шарами. Однако в первом случае мы имеем дело со сферой, а во втором с полноценным шаром со своим содержимым внутри.
Определение. Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки.
Данная точка называется центром сферы, а данное расстояние – радиусом сферы.
Любой отрезок, соединяющий центр сферы с какой-либо ее точкой, также называется радиусом сферы.
Отрезок, соединяющий две точки сферы, называется хордой сферы.
Отрезок, соединяющий две точки сферы и проходящий через ее центр, называется диаметром сферы. Понятно, что .
Тело, ограниченное сферой, называется шаром.
Определение. Шар – это совокупность всех точек пространства, находящихся от центра на расстоянии, не больше заданного.
Центр, радиус и диаметр сферы называются также центром, радиусом и диаметром шара. Т.е. отрезок, соединяющий любую точку сферы с центром шара, называется радиусом шара.
Отрезок, соединяющий две точки сферы и проходящий через центр шара, называется диаметром шара. Диаметр шара равен двум радиусам.
Перед нами математическое изображение шара. Точка О – это центр шара. Все точки поверхности шара одинаково удалены от центра шара. Понятно, что шар радиуса r с центром О содержит все точки пространства, расположенные от точки О на расстоянии, не превышающем r (включая саму точку О), и не содержит других точек.
Хотелось бы обратить внимание на то, что шар может быть получен путем вращения полукруга вокруг его диаметра. При этом сфера образуется в результате вращения полуокружности.
Пользуясь принципом Кавальери, можно доказать, что .
В отличие от боковых поверхностей цилиндра и конуса сферу нельзя развернуть так, чтобы получилась плоская фигура.
Поэтому для сферы не подходит способ вычисления площади с помощью развертки.
Вопрос о том, что понимать под площадью сферы и как ее вычислять, мы будем подробно рассматривать в курсе стереометрии в одиннадцатом классе.
Сейчас только отметим, что для площади S сферы радиуса r получается формула: .
Если шар разрезать, то фигура, образованная на срезе, есть круг.
Сам же срез называют сечением. В свою очередь, сечение сферы плоскостью есть окружность.
Задача. Найдите объем шара и площадь сферы с радиусом метра. Число .
(м 3 )
(м 2 )
Ответ: , .
Немного из истории. Оба слова «шар» и «сфера» происходят от греческого слова «сфайра» – мяч, шар.
В древности сфера и шар были в большом почете.
Пифагорейцы учили о существовании десяти сфер Вселенной, по которым якобы двигаются небесные тела. Они утверждали, что расстояние этих тел друг от друга пропорциональны интервалам музыкальной гаммы. В этом усматривали элементы мировой гармонии. Отсюда пошло выражение «музыка сферы».
Аристотель считал, что шарообразная форма, как наиболее совершенная, свойственна Солнцу, Земле, Луне и всем мировым телам. Так же он полагал, что Земля окружена рядом концентрических сфер.
Подведем итоги урока. На этом уроке мы рассмотрели понятия сферы и шара. Узнали, что сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки. А шар – это совокупность всех точек пространства, находящихся от центра на расстоянии, не больше заданного. Назвали некоторые из элементов сферы и шара. А также узнали, как находят объем шара и площадь сферы.
Геометрия. 11 класс
Конспект урока
Геометрия, 11 класс
Урок №8. Сфера и шар
Перечень вопросов, рассматриваемых в теме:
- что такое сфера, какие у неё есть элементы (центр, радиус, диаметр сферы);
- что такое шар и его элементы;
- уравнение сферы;
- формула для нахождения площади поверхности сферы;
- взаимное расположение сферы и плоскости;
- теорема о радиусе сферы, который проведён в точку касания и теорему обратную данной.
Глоссарий по теме:
Определение
Окружность – множество точек плоскости, равноудалённых от данной точки. Данная точка называется центром окружности, расстояние от центра до любой точки окружности называется радиусом окружности.
Определение
Круг – это часть плоскости, ограниченная окружностью.
Определение
Сфера – это поверхность, состоящая из всех точек пространства, расположенных на заданном расстоянии от данной точки, которую называют центром.
Определение
Тело, ограниченное сферой, называется шаром.
Шар можно описать и иначе. Шаром радиуса R с центром в точке О называется тело, которое содержит все точки пространства, расположенные от точки О на расстоянии, не превышающем R (включая О), и не содержит других точек.
Уравнение сферы
– уравнение сферы радиуса R и центром С(x0; y0; z0).
Определение
Плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью к сфере, а их общая точка – точкой касания.
Определение
Сегмент шара — это часть шара, которая отсекается от шара секущей плоскостью. Основой сегмента называют круг, который образовался в месте сечения. Высотой сегмента h называют длину перпендикуляра проведенного с середины основы сегмента к поверхности сегмента.
Определение
Сектором называется часть шара, ограниченная совокупностью всех лучей, исходящих из центра шара О и образующих круг на его поверхности с радиусом r.
Основная литература:
Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Геометрия. 10–11 классы : учеб. для общеобразоват. организаций : базовый и углубл. уровни – М. : Просвещение, 2014. – 255, сс. 136-142.
Дополнительная литература:
Шарыгин И.Ф., Геометрия. 10–11 кл. : учеб. для общеобразоват. учреждений– М.: Дрофа, 2009. – 235, : ил., ISBN 978–5–358–05346–5, сс. 77-84.
Открытые электронные ресурсы:
Теоретический материал для самостоятельного изучения
1. Основные теоретические факты
По аналогии с окружностью сферу рассматривают как множество всех точек равноудалённых от заданной точки, но только всех точек не плоскости, а пространства.
Рисунок 1 – Сфера с центром в точке О и радиусом R
Данная точка О называется центром сферы, а заданное расстояние – радиусом сферы (обозначается R). Любой отрезок, соединяющий центр и какую-нибудь точку сферы, также называется радиусом сферы. Отрезок, соединяющий две точки сферы и проходящий через центр, называется диаметром (обозначается D). D=2R.
Определение
Сферой называется поверхность, состоящая из всех точек пространства, расположенных на заданном расстоянии от данной точки, которую называют центром.
Определение
Тело, ограниченное сферой, называется шаром.
Шар можно описать и иначе. Шаром радиуса R с центром в точке О называется тело, которое содержит все точки пространства, расположенные от точки О на расстоянии, не превышающем R (включая О), и не содержит других точек.
Сферу можно получить ещё одним способом — вращением полуокружности вокруг её диаметра, а шар – вращением полукруга вокруг его диаметра.
2. Уравнение сферы
Прежде чем вывести уравнение сферы введем понятие уравнения поверхности в пространстве. Для этого рассмотрим прямоугольную систему координат Oxyz и некоторую поверхность F. Уравнение с тремя переменными x, y, z называется уравнением поверхности F, если этому уравнению удовлетворяют координаты любой точки поверхности F и не удовлетворяют координаты никакой другой точки.
Пусть сфера имеет центром точку С (x0; y0; z0) и радиус R. Расстояние от любой точки М (x; y; z) до точки С вычисляется по формуле:
МС=
Исходя из понятия уравнения поверхности, следует, что если точка М лежит на данной сфере, то МС=R, или МС 2 =R 2 , то есть координаты точки М удовлетворяют уравнению:
.
Это выражение называют уравнением сферы радиуса R и центром С(x0; y0; z0).
3. Взаимное расположение сферы и плоскости
Взаимное расположение сферы и плоскости зависит от соотношения между радиусом сферы R и расстояния от центра сферы до плоскости d.
1. Пусть dR. Если расстояние от центра сферы до плоскости меньше радиуса сферы, тогда сфера и плоскость пересекаются, и сечение сферы плоскостью есть окружность.
2. Пусть d=R. Если расстояние от центра сферы до плоскости равно радиусу сферы тогда сфера и плоскость имеют только одну общую точку, и в этом случае говорят, что плоскость касается сферы.
3. Пусть dR. Если расстояние от центра сферы до плоскости больше радиуса сферы, то сфера и плоскость не имеют общих точек.
Рассмотрим случай касания более подробно.
Определение
Плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью к сфере, а их общая точка – точкой касания.
Теорема (свойство касательной плоскости).
Радиус сферы, проведённый в точку касания сферы и плоскости, перпендикулярен к касательной плоскости.
Теорема (признак касательной плоскости):
Если радиус сферы перпендикулярен к плоскости, проходящей через его конец, лежащей на сфере, то эта плоскость является касательной к сфере.
4. Основные формулы
Соотношение между радиусом сферы, радиусом сечения и расстоянием от центра сферы до плоскости сечения:
Формула для вычисления площади поверхности сферы и ее элементов:
S=4πR 2 – площадь сферы.
S = 2πRh – площадь поверхности сегмента сферы радиуса R с высотой h.
– площадь поверхности сектора с высотой h.
Примеры и разбор решения заданий тренировочного модуля
1. Площадь сечения шара, проходящего через его центр, равна 9 кв. м. Найдите площадь поверхности шара.
Площадь круга вычисляется по формуле: Sкр=πR 2 .
Площадь поверхности шара вычисляется по формуле: Sсф=4πR 2 . Радиус шара и радиуса сечения, проходящего через центр шара, одинаковые. Поэтому площадь поверхности шара в 4 раза больше площади его диаметрального сечения. То есть площадь поверхности шара равна 36.
2. Вычислите радиус круга, площадь которого равна площади сферы радиуса 5.
Площадь сферы равна Sсф=4πR 2 . То есть Sсф=100π.
По условию площадь круга некоторого радиуса r также равна 100π. Значит, r 2 =100, то есть r=10.
3. Все стороны треугольника АВС касаются сферы радиуса 5. Найти расстояние от центра сферы до плоскости треугольника, если АВ=13, ВС=14, СА=15
Окружность, вписанная в треугольник, является сечением сферы.
Найдем ее радиус.
Площадь треугольника с известными сторонами можно вычислить по формуле Герона:
С другой стороны, S=p·r.
Теперь найдем расстояние от центра шара до секущей плоскости.
4. Вершины прямоугольника лежат на сфере радиуса 10. Найти расстояние от центра сферы до плоскости прямоугольника, если его диагональ равна 16.
Так как вершины прямоугольника лежат на сфере, то окружность, описанная около прямоугольника, является сечением сферы.
Радиус окружности, описанной около прямоугольника, равен половине его диагонали, то есть r=8.
Сфера и шар – определение, формула объема и площади с примерами
Сфера и шар – это аналог круга и окружности в трехмерном пространстве. Стоит поговорить о каждой из этих фигур, выделить сходства и различия, а так же формулы, свойственные этим фигурам.
Трехмерное пространство
Большая часть геометрических построений производится в плоскости, но в старших классах начинают изучать трехмерные фигуры. Двухмерное пространство имеет только две характеристики: длину и ширину. В трехмерных областях добавляется высота. В математике 6 класса изучаются отдельные 3д фигуры.
На плоскости фигуру характеризовала площадь и периметр. В трехмерных объектах к ним прибавляется объем.
Рис. 1. Трехмерное пространство.
Кроме того, имеется ряд специфических свойств 3д фигур. Их может пересекать прямая и плоскость, могут имеется секущие плоскости, которые принимают формы других фигур.
Применение 3д фигур для составления задач значительно усложняет их, но в то же время делает куда более интересными. Приведем определения шара и сферы, после чего попробуем выделить различия этих фигур.
Шар и сфера – это аналог круга и окружности в плоскости. Шар представляет собой фигуру, полученную вращением полукруга вокруг одной точки.
Шар имеет площадь поверхности: $S=4pir^2$
Радиус это отрезок, соединяющий центр шара и любую из точек на его поверхности.
Объем показывает, какое пространство занимает фигура. Чтобы понять, что такое объем нужно представить себе фигуру полой. Тогда объем это количество воды, которое можно налить в эту фигуру
Шар, как и любую другую трехмерную фигуру, можно рассечь плоскостью. Секущей плоскостью шара является круг, центр которого можно найти, опустив из центра шара перпендикуляр на окружность.
Рис. 2. Сечение шара.
Хоть в школьном курсе такие ситуации не случаются, но нужно понимать, что шар может быть рассечен плоскостью под углом. Но даже в этом примере, секущая плоскость останется шаром.
Сфера
Сфера это фигура, представляющая собой множество точек в пространстве, равноудаленных от центра сферы. Сфера:
- Имеет те же формулы объема и площади поверхности, что и шар.
- Секущая плоскость сферы это окружность
- Центр секущей окружности, находится так же, как и в случае с шаром
В чем различие
Тогда возникает вопрос, а чем отличается шар от сферы кроме определения? Дело в том, что различия шара и сферы куда более размыты, нежели различия круга и окружности. Сфера так же имеет объем и площадь поверхности.
Пожалуй, кроме определения, разница заключается в том, что в задачах никогда не находят объем сферы. Как правило, ищут объем шара. Это не значит, что у сферы нет объема. Это трехмерная фигура, поэтому объем у нее есть.
Просто проводится аналогия с окружностью, у которой нет площади. Это не правило, но скорее традиция, которую нужно запомнить: в геометрии не приветствуется формулировка объем сферы.
Еще одно отличие, которое можно считать более или менее значимым: секущая плоскость сферы: окружность, которая не имеет внутреннего пространства, но имеет длину. Секущая плоскость шара: круг, который имеет площадь и не имеет длины окружности. Поэтому стоит быть аккуратным в формулировках задачи, чтобы не было ошибок из-за подобных мелочей.
Что мы узнали?
Мы узнали, что такое сфера и шар. Поговорили об их сходствах и различии. Узнали, что различий у этих фигур почти нет. Решили, что не стоит приводить такую формулировку, как объем сферы.
Статья: «Сфера и шар».
ученица: Хубаева Диана
ШАР И СФЕРА
Шар и сфера – это прежде всего геометрические фигуры, и если шар – это геометрическое тело, то сфера – это поверхность шара. Этими фигурами интересовались еще многие тысячи лет назад до н.э.
Впоследствии когда было открыто, что Земля – это шар, а небо – небесная сфера, получило развитие новое уникальное направление в геометрии – геометрия на сфере или сферическая геометрия. Давайте дадим определения сфере и шару.
Шар – геометрическое тело, ограниченное поверхностью, все точки которого находятся на равном расстоянии от центра.
Сфера – это геометрическое место точек в пространстве, равноудаленных от некоторой заданной точки (центра сферы).
Сфера является поверхностью шара. Она имеет наименьшую площадь из всех поверхностей, ограничивающих данный объём, также из всех поверхностей с данной площадью сфера ограничивает наибольший объём. Поэтому тела сферической формы встречаются в природе, например, маленькие капли воды при свободном падении приобретают сферическую форму именно из-за минимизации площади поверхности силой поверхностного натяжения.
ЗНАЧЕНИЕ СФЕРЫ В ЕСТЕСТВОЗНАНИИ
Совершенство сферической формы издавна привлекало внимание мыслителей и учёных, которые с помощью сфер пытались объяснить гармонию окружающего мира. Древнегреческий учёный Пифагор вместе с шарообразной Землёй в центре Вселенной ввёл окружающую Землю удалённую хрустальную сферу, к которой прикреплены звёзды, и семь более близких вращающихся хрустальных сфер, к которым прикреплены Солнце, Луна и пять известных к тому времени планет (исключая Землю). Эта модель впоследствии усложнялась: Евдокс Книдский рассматривал уже 27 подобных сфер, а Аристотель — 55 хрустальных сфер. Представления о вращающихся небесных сферах господствовали по крайней мере до средних веков и даже вошли в гелиоцентрическую систему мира Николая Коперника, который назвал свой основной труд «О вращении небесных сфер» (лат. De revolutionibus orbium coelestium).
Небесные сферы со времён Древней Греции были частью более общей концепции гармонии сфер о музыкально-астрономическом устройстве мира, куда также входило понятие «музыка сфер». Эта концепция также существовала как минимум до средневековья. У одного из известнейших астрономов, Иоганна Кеплера, сфера занимала центральное место во всей его системе религиозно-мистических представлений, он писал: «Образ триединого бога есть сферическая поверхность, а именно: бог-отец в центре, бог-сын — на поверхности и святой дух — в симметричном отношении между центром и описанной вокруг него сферической поверхностью». Одно из первых значительных сочинений Кеплера, «Тайна мироздания» (лат. Mysterium Cosmographicum), было посвящено параметрам небесных сфер, Кеплер считал, что он открыл замечательную связь между правильными многогранниками, которых только пять, и небесными сферами шести известных к тому времени планет (включая Землю), являвшимися, по Кеплеру, описанными и вписанными сферами этих многогранников. Представления о гармонии сфер сыграли большую роль при открытии Кеплером третьего закона движений небесных тел (во всяком случае, могут рассматриваться как стимул к поиску астрономических соотношений). Однако у Кеплера небесные сферы являлись уже чисто математическими объектами, а не физически существующими телами. К тому времени Тихо Браге показал, что движение комет, в частности, Большой кометы 1577 года, несовместимо с существованием твердых небесных сфер. Как удобная математическая модель, осталась одна небесная сфера, с помощью которой астрономы по сей день представляют видимые положения звезд и планет.
ГЕОМЕТРИЯ НА СФЕРЕ
Окружность, лежащая на сфере, центр которой совпадает с центром сферы, называется большим кругом (большой окружностью) сферы. Большие окружности являются геодезическими линиями на сфере; любые две из них пересекаются в двух точках. Иными словами, большие круги сферы являются аналогами прямых на плоскости, расстояние между точками на сфере — длина дуги проходящего через них большого круга. Углу же между прямыми на плоскости соответствует двугранный угол между плоскостями больших кругов. Многие теоремы геометрии на плоскости справедливы и в сферической геометрии, существуют аналоги теоремы синусов, теоремы косинусов для сферических треугольников. В то же время, существует немало отличий, например, в сферическом треугольнике сумма углов всегда больше 180 градусов, к трём признакам равенства треугольников добавляется их равенство по трём углам, у сферического треугольника может быть два и даже три прямых угла — например, у сферического треугольника, образованного экватором и меридианами 0° и 90°.
Рассмотрим некоторые пример использования формы шара в жизни человека.
Как известно, жилище первобытного человека имело округлые формы: юрты, чумы, вигвамы, шатры. Сегодня сфера, как самое совершенное из Платоновых тел, пытается вернуть утраченные позиции. Сегодня в рамках органической архитектуры дома сферической или полусферической формы демонстрируют целую галерею природных образов: это могут быть дома-пузыри (как творения Антти Ловага на Лазурном берегу), сейсмостойкие японские дома-шары диаметром 6 м или целые конгломераты шаров, напоминающие то пчелиные соты, то пену.
Резервуары для хранения нефти и газа имеют сферическую форму. Сферические оболочки окружают антенны радиолокаторов, стоящих на научных судах, следящих за полетом наших кораблей и спутников, принимающих оттуда важную информацию.
Изготовление охотничьей дроби: расплавленный свинец льют через тонкие отверстия. В полете, струя разбивается на капли, которые, падая в воду, застывают в виде одинаковых шариков.
Шаровая форма мяча доставляет ему еще одно замечательное свойство – он одинаков со всех сторон и может катиться в любую сторону. Наверное, этим во многом вызван успех таких игр как футбол, волейбол, гандбол, теннис, пинг-понг. Это свойство шара используется не только в играх, но и в технике, например, в шарикоподшипниках: несколько шариков помещаются в обойму из двух колец. Кольца легко перекатываются по шарикам, поэтому шарикоподшипники ставят на осях велосипедов, мотоциклов, автомашин, и не только на осях колес, но и во всех местах, где происходит вращение. В обычном велосипеде можно насчитать не менее 11 шарикоподшипников.
Делая вывод, стоит заметить, что это лишь малая часть применений формы шара, без которых нам нельзя представить нашу жизнь. Изучив информацию о форме шара, мы понимаем, что сама природа взяла эту форму для устройства мира. Также по материалу о Божественном мироздании, стало ясно, что в его основе лежит шар как идеальная форма. Наука эниология подсказала нам, что человеку необходимо находиться в окружении округлых тел, так как круглым формам присуще равномерное поле без существенных зон напряжений и патогенных аномалий. Всё это и приводит к значимости формы шара в нашей жизни.