Чем половые клетки отличаются от соматических

Чем половые клетки отличаются от соматических

В отличие от соматических, половые клетки (гаметы — от слова «брачующиеся») специализированы на воспроизводстве поколений организмов и имеют половинный (гаплоидный) генетический набор (lcln, или 23 хромосомы — у человека).

Различают мужские и женские половые клетки, которые несут генетическую информацию по отцовской и материнской линиям. В половых клетках у человека присутствуют 22 аутосомы и 1 половая хромосома, которая обозначается как X или Y — у мужчин и X — у женщин. При слиянии мужской и женской половых клеток в процессе оплодотворения образуется диплоидная клетка — зигота, дающая начало всем клеткам нового организма. В эмбриогенезе человека половые клетки впервые обнаруживаются в желточной энтодерме, т. е. внегонадно, а затем мигрируют в закладку половых желез.

При первом знакомстве со строением зрелых мужских и женских половых клеток, обращает на себя внимание их высокая функциональная целесообразность. Сперматозоиды, которые должны быть высокомобильны в женском половом тракте, представляют собой маленькие клетки, практически лишенные цитоплазмы и состоящие из ядросодержащей части, или головки, несущей генетический материал, и органа передвижения — хвоста, или жгутика. Никаких иных субклеточных элементов, кроме митохондрий, дающих энергию для передвижения, акросомальной вакуоли с протеолитическими ферментами для растворения оболочек яйцеклетки, и проксимальной центриоли, сперматозоиды не имеют. Общая длина спермия составляет около 60 мкм, из которых на долю хвоста приходится 55 мкм.

На ультрамикроскопическом уровне в головке сперматозоида различимы акросомальная и постакросомальная зоны, в хвосте — промежуточный, главный и концевой отделы. Большую часть головки занимает ядро, заполненное конденсированным хроматином. Пространство между ядром и передним участком плазмолеммы спермия занято акросомальной вакуолью — специализированной лизосомой, содержащей группу ферментов-лизинов оболочек яйцеклетки: акрозин (разрушает прозрачную зону овоцита), пенетраза (диссоциирует клетки лучистого венца), гиалуронидаза (расщепляет гиалуроновую кислоту), кислая фосфатаза (разрушает форсхолин при прохождении спермиев через плазмолемму овоцита). Шейка спермия представляет собой короткий отдел, в котором находятся проксимальная центриоль и 9 сегментированных колонн.

Промежуточный отдел содержит аксонему и 9 продольно ориентированных элементов цитоскелета, состоящих из кератиноподобных белков и являющихся продолжением сегментированных колонн. Кнаружи от этих волокон располагаются митохондрии. Аксонема построена по принципу реснички, биения которой инициируются катионами кальция, находящимися в окружающей среде, и митохондриальной АТФ спермия. В концевом отделе хвоста элементы цитоскелета исчезают, и аксонема прикрыта лишь плазмолеммой. У человека дуплеты аксонемы в концевом отделе распадаются на 18 одиночных микротрубочек.

По выходе из яичка спермин морфологически сформированы, но функционально незрелы — они неподвижны, не способны к оплодотворению и, помимо этого, являются носителями ряда специфических антигенов, инактивация которых (как и приобретение подвижности и оплодотворяющей способности — капацитации) происходит в системе семявыносящих путей мужского полового тракта.

Яйцеклетка в отличие от сперматозоидов крупная и неподвижная. У большинства млекопитающих и человека ее размеры достигают 100-200 мкм. Женская половая клетка является хранительницей запаса трофических соединений, необходимых для раннего развития зародыша, и «запаса» цитоплазматических структур для формирования первых генераций зародышевых клеток — бластомеров. У человека крупные размеры яйцеклетки не связаны с большими запасами желтка — яйцеклетка человека бедна желтком (олиголецитальная).

На ультрамикроскопическом уровне яйцеклетка человека имеет крупное округлое ядро, в котором преобладает эухроматин, и цитоплазму с умеренным количеством митохондрий с немногочисленными ламеллярными кристами. Хорошо развита система белкового синтеза из-за высокого содержания рибо- и полисом, коротких канальцев гранулярной эндоплазматической сети. В цитоплазме редко и диффузно расположены немногочисленные скопления вителлиновых гранул — коллекторов трофических включений.

Следует особенно подчеркнуть, что у высших плацентарных млекопитающих и человека женские половые клетки не существуют изолированно. За исключением самых ранних стадий развития (первичных половых клеток, овогоний) они находятся в тесном контакте с соматическими клетками яичника (фолликулярными эпителиоцитами и соединительнотканными клетками), которые формируют вокруг каждой половой клетки эпителиальную и соединительнотканную оболочки. Комплекс «половая клетка — соматические оболочки» именуется овариальным фолликулом, или ово-соматическим (фолликулярным) гистионом. Строение овариального фолликула усложняется в процессе овогенеза.

Эмбриология как наука. Морфологические особенности половых клеток самцов и самок

Гаструляция. Зародышевые листки и осевые органы.

Дробление.

Оплодотворение.

Спермато- и овогенез.

Эмбриология как наука. Морфологические особенности половых клеток самцов и самок.

Лекции. Учение об эмбриологии.

Эмбриология — наука о закономерностях развития организма животных от момента оплодотворения яйцеклетки и образования зиготы до рождения или вылупления из яйца.

Эмбриогенез является частью индивидуального развития, то есть онтогенеза. Он тесно связан с прогенезом, который делится на гаметогенез и оплодотворение.

Половые клетки (гаметы) самок называются яйцеклетки, самцов – сперматозоиды.

Отличия половых клеток от соматических:

1. Набор хромосом половых клеток — гаплоидный, соматических — диплоидный.

2. Для половых клеток характерно сложное, стадийное развитие; при этом имеет место особый способ деления — мейоз.

3. Половые клетки имеют специальные приспособления:

— сперматозоид имеет акросому (для проникновения через оболочки яйцеклетки) и мощный двигательный аппарат — хвостик;

— яйцеклетка имеет желток (запас питательных веществ и строительных материалов) и дополнительные оболочки, кроме цитолеммы.

4. У половых клеток особое ядерно-цитоплазматическое отношение: у сперматозоида очень высокое (преобладает ядро над цитоплазмой), в яйцеклетках очень низкое (преобладает цитоплазма над ядром).

5. Обмен веществ в зрелых половых клетках до оплодотворения находится на очень низком уровне (почти до анабиоза).

6. Биологическое назначение: если от соматической клетки может образоваться лишь такая же дочерняя клетка, то от половых клеток формируется новый организм.

В строении сперматозоида различают головку, шейку и хвостик.

Передняя часть головки сперматозоида называется акросомой. Она богата ферментом гиалуронидазой, который разрушает фолликулярный слой яйцеклетки и происходит ее оплодотворение. В головке располагается ядро с гаплоидным набором хромосом.

Шейка – небольшой участок сперматозоида, содержащий две центриоли.

В хвостике сперматозоида различают следующие отделы:

— промежуточный — является основанием хвостика и состоит из осевой нити хвостика и окружающей её цитоплазмы, богатой митохондриями. Здесь находятся запасы гликогена, что обеспечивает спермиям энергию;

— главный — состоит из осевой нити и окружающей цитоплазмой, содержащий фермент аденозинтрифосфатозу;

— кольцевой — состоит из истончающейся осевой нити и плазмолеммы.

Биологические свойства сперматозоида:

1.Находясь в половых органах самца, имеет очень низкий уровень обмена веществ. Они не подвижны, лежат плотными массами. Попадая в концевой отдел придатка семенника, приобретают одинаковый электронный заряд и начинают отталкиваться друг от друга. При осеменении они быстро активизируются и энергично передвигаются. Скорость передвижения ровна 2 – 5 мм в мин.

2.Способность направленного прямолинейного движения.

3.Способность двигаться против тока жидкости (реотаксис).

4.Быстро расходует ничтожный запас энергии и через 24 – 36 часов погибает.

5.Чувствительность к кислой среде и ионам двух- и трёхвалентных металлов.

По сравнению со спермиями яйцеклеткиобразуются в меньшем количестве и имеют значительно больший размер.

Яйцеклетка состоит из ядра, цитоплазмы и оболочек. Ядро шаровидной формы содержит гаплоидное число хромосом. Ядрышко крупное. В цитоплазме большое количество рибосом, эндоплазматической сети, комплекса Гольджи, митохондрий, желтка. Желток представляет собой совокупность включений, состоящих из различных питательных веществ (протеинов, углеводов, фосфолипидов).

Яйцеклетка покрыта оболочками. Различают первичную, вторичную и третичную оболочки.

Первичная оболочка – это цитолемма яйцеклетки. Вторичная оболочка состоит из фолликулярных клеток и выполняет трофическую, защитную функции и препятствует полиспермии. Третичная оболочка яйцеклетки секретируется клетками яйцевода. Эта оболочка играет защитную функцию и развита у птиц и пресмыкающихся. Третичной оболочкой у птиц является белок, подскорлуповая и скорлуповая оболочки яйца. Величина яйцеклетки зависит от количества желтка.

Яйцеклетки различают по количеству желтка:

1.Олиголецитальные, содержащие малое количестве желтка (у ланцетника и млекопитающих).

2.Мезолецитальные со средним количеством желтка (у амфибий).

3.Полилецитальные содержащие большое количество желтка (пресмыкающиеся, птицы).

По расположению желтка различают:

1. Гомолецитальные (изолецитальные) – желток располагается диффузно по всей яйцеклетки.

2. Телолецитальные – желток располагается у одного полюса клетки.

3. Центролецитальные – желток расположен в центре яйцеклетки.

Клетка – генетическая единица живого. Хромосомы, их строение

Содержание:

Клетка – генетическая единица живого

Генетическая информация каждого живого организма находится именно в клетке, так как основная её структура – ядро содержит хромосомы, которые и отвечают за определённые внешние и внутренние признаки. У организмов, не имеющих ядра, например у вирусов, наследственная информация содержится в виде кольцевой ДНК. Поэтому для воспроизводства данные организмы проникают в многоклеточные организмы, так как генетический материал не реализуется вне клетки. Из этого следует, что клетка является генетической единицей всего живого, потому что она обладает минимальным набором компонентов для хранения, изменения, реализации и передачи потомкам информации о фенотипе и генотипе организма.

Все эти процессы возможны, благодаря тому, что в ядре находятся хромосомы.

Строение и функции хромосом

Хромосома – структура клеточного ядра, имеющая в своём составе дезоксирибонуклеиновую кислоту (ДНК) и белок — гистон, что и определяет её наследственную функцию.

Читайте также  Чем цифры отличаются от чисел: отличия и виды

Соединение ДНК и белка гистона называется хроматином. Из него в профазе митоза, в самом начале деления клетки, образуются хромосомы. Строение хромосомы наиболее хорошо удаётся рассмотреть под световым микроскопом в процессе деления клетки, а конкретно в метафазе митоза.

Хромосома состоит из двух сестринских хроматид, представляющих собой нити молекулы ДНК с белками. Хроматиды образуются в результате удвоения хромосомы в процессе деления клетки.

У каждой хромосомы имеется участок ДНК, называемый центромерой (кинетохором). Здесь в стадии профазы и метафазы деления клетки осуществляется соединение двух дочерних хроматид. Центромера делит хромосому на два плеча.

Существуют хромосомы, имеющие вторичные перетяжки, которые отделяют от плеча хромосомы так называемый спутник, из которого в последующем в интерфазном ядре образуется ядрышко.

Концевые участки хромосом принято называть теломерами.

По форме хромосомы различают:

  • Метацентрические. Центромера находится в середине и плечи её равны.
  • Субметацентрические. Центромера смещена относительно середины и одно плечо короче другого.
  • Акроцентрические. Центромера расположена у конца хромосомы и одно плечо намного короче другого.

Существует две классификации хромосом по размеру и форме:

  1. денверская;
  2. парижская.

Денверская классификация помимо размеров хромосом, также учитывает их форму, расположение кинетохора и наличие вторичных перетяжек, спутников. Важным является значение центромерного индекса, отражающего процентное соотношение длины короткого плеча к длине всей хромосомы. Проводилось сплошное окрашивание хромосом.

Группы хромосом по денверской классификации:

  • Группу А образуют 1 – 3 большие метацентрические и субметанцентрические хромосомы, имеющие центромерный индекс (ЦИ) от 38 – 49.
  • Группу В образуют 4 – 5 пары больших субметацентрических хромосом с центромерным индексом 24 – 30.
  • Группа С состоит из 6 – 12 пары субметацентрических хромосом среднего размера с центромерным индексом 27 – 35. Х-хромосому относят именно к этой группе.
  • Группу D составляют 13 – 15 пары акроцентрических хромосом сильно отличающихся от всех остальных хромосом человека, ЦИ около 15.
  • Группа Е образована 16 – 18 парами относительно коротких метацентрических хромосом с ЦИ 26 – 40.
  • Группа F (19 – 20 пары): две короткие, субметанцентрических хромосомы с ЦИ 36 – 46.
  • Группа G, образованная 21 – 22 парами маленьких акроцентрических хромосом с ЦИ 13 -33. В неё входит Y – хромосома.

Парижская классификация основывается на методах специального дифференциального окрашивания, при котором каждая хромосома имеет индивидуальный порядок чередующихся светлых и тёмных сегментов.

Число хромосом и их видовое постоянство. Соматические и половые клетки

У многоклеточных организмов клетки подразделяются на два вида:

  1. соматические;
  2. половые.

Соматическими называют все клетки тела, которые образуются в результате митоза.

Для этих клеток характерным признаком является наличие постоянного числа хромосом. Для каждого вида организмов их количество строго определено. Человек имеет 23 пары хромосом.

Набор хромосом соматических клеток называется диплоидным (двойным).

Половые же клетки всегда содержат уменьшенный вдвое, гаплоидный (одинарный) набор хромосом. Половые клетки также называются гаметами.

Совокупность полного набора хромосом, присущая клеткам определённого биологического вида, отдельного организма или линии клеток называется кариотипом.

Принято считать, что кариотип является видовой характеристикой. Но бывает и так, что он различается у особей одного вида. Пример этого отличающиеся друг от друга половые хромосомы мужских и женских организмов. У Y – хромосомы отсутствуют некоторые аллели (модификационные формы одного и того же гена, расположенные в одинаковых участках гомологичных хромосом), тогда как у Х – хромосомы они есть. Мужчины гетерогаметны, то есть несут и X –и Y – хромосомы, в то время как женщины гомогаметны, так как их половой набор содержит только X – хромосомы. Немаловажным фактором являются мутации, которые приводят к различным изменениям кариотипа. Важно отметить, что количество хромосом и уровень организации вида не имеют прямой зависимости. То есть, если вид имеет большое количество хромосом, это не говорит о его высокой организации. Кариотипы диплоидных клеток состоят из пар хромосом, названных гомологичными. Хромосомы одной пары называются гомологичными, они находятся в одинаковых локусах (местах расположения) и несут аллельные гены. Одну из хромосом организм всегда получает от матери, другую от отца.

В ядрах некоторых соматических клеток количество хромосом может отличаться от их количества в соматических клетках. Встречаются полплоидные клетки, они содержат более одного гаплоидного набора хромосом и называются соответственно три-, тетраплоидные и т.д. Метаболические процессы в полиплоидных клетках протекают в разы интенсивнее.

Хромосомы человека делятся на две группы: аутосомы (неполовые) и половые хромосомы, также называемые гетерохромосомами. В соматических клетках организма человека содержится 22 пары аутосом, которые являются одинаковыми и для мужчин и для женщин, половых же хромосом всего одна пара, эта пара и определяет пол особи. Различают два вида половых хромосом — X и Y. В половых клетках женщины содержится по две X-хромосомы, а в половых клетках мужчин две различных хромосомы — X и Y.

Митоз в ЕГЭ по биологии: теория и задания

Людмила Микушева

Деление клетки — одна из важнейших тем ЕГЭ по биологии, ведь она может принести целых пять первичных баллов! Выделяют два основных типа деления клеток: митоз (образование соматических клеток) и мейоз (образование половых клеток). В этой статьи обсудим митоз в ЕГЭ по биологии: разберем теорию и порешаем задания.

Соматические и половые клетки

Для начала разберемся, чем различаются половые клетки. Напомню, что количество хромосом в клетке принято обозначать «n», а количество молекул ДНК — «с». Причем n и с — это не просто количество в единицах, а количество наборов. Например, если в клетке печени человека 23 пары хромосом (2*23 = 46), то набор в ней 2n. В каждой хромосоме находится по одной молекуле ДНК (тоже 23 пары), значит в буквенном обозначении — с.

Соматические или неполовые клетки — это клетки тела. Например, клетка глаза, клетка печени, нейрон или эритроцит. Набор хромосом в таких клетках двойной или диплоидный (2n). Для человека набор в соматических клетках – 46, но эти хромосомы не одинаковые. Среди них есть неполовые хромосомы (аутосомы) и половые. Из 46 хромосом у человека 44 аутосомы и 2 половые, для женщин – ХХ, а для мужчин ХУ. Из 8 хромосом у дрозофил 6 аутосом и тоже 2 половые.

Половые клетки или гаметы — это яйцеклетки и сперматозоиды. Набор в таких клетках одинарный или гаплоидный (n). Для человека это 23 хромосомы, а для дрозофил, например, 4 хромосомы. Но и среди этих хромосом выделяют половые и аутосомы. Гаметы несут по одной половой хромосоме. Допустим, в яйцеклетке это Х хромосома, а вот в сперматозоиде может быть Х или У (поэтому пол потомства зависит от сперматозоида). Из 23 хромосом в гаплоидном наборе у человека 22 аутосомы и только одна половая.

Если хотите лучше понять клеточную теорию, необходимую для ЕГЭ, приходите учиться в MAXIMUM! Записывайтесь на консультацию — вы сможете пройти диагностику по выбранным предметам ЕГЭ, поставить цели и составить стратегию подготовки, чтобы получить на экзамене высокие баллы. Все это абсолютно бесплатно!

Процесс митоза

Деление клетки — это важный, сложный и энергозатратный процесс. Представьте себе, что вы планируете пойти в поход — что вам нужно сделать перед этим? Для начала нужно подготовиться — скорее всего, сборы займут у вас даже больше сил, чем путешествие. Вот и клетке необходимо подготовиться! Для этого перед делением проходит интерфаза.

Интерфаза деления

Обращаю ваше внимание на то, что интерфаза не является фазой деления. Ее правильнее будет назвать подготовительной стадией. Если бы вы были клеткой, что бы вам хотелось сделать, чтобы деление прошло без осложнений, а чтобы новые клетки ни в чем не нуждались первое время? В этой ситуации пригодилась бы энергия, строительные и наследственные материалы. Для получения всех этих веществ и проходит интерфаза.

Процессы, проходящие в интерфазу:

  • Синтез АТФ. В молекулах АТФ в нашем организме запасается энергия, а без энергии такую сложную процедуру было бы невозможно провести.
  • Синтез и накопление органических веществ. Нужно же из чего-то строить новые клетки?
  • Репликация ДНК. Удвоение молекулы ДНК — центральный процесс интерфазы. Из одной молекулы ДНК образуется две, молекула раскручивается и к каждой из цепочек, по принципу комплементарности, достраивается еще одна цепь. В итоге вместо одной ДНК в хромосоме образуется две, такая хромосома называется двухроматидной, а набор ДНК становится 4с.
  • Удвоение некоторых органоидов. Это нужно, чтобы после деления каждой клетке достался примерно одинаковый стартовый набор для начала самостоятельной жизни.

После такой серьезной подготовки можно перейти к делению. Благодаря репликации ДНК в интерфазе, клетка вступает в митоз с набором 2n4c. Например, для человека это 46 хромосом и 92 молекулы ДНК (по две молекулы в каждой хромосоме).

Для ЕГЭ важно помнить, что митоз проходит в 4 фазы. Чтобы закрепить правильную последовательность стадий, предлагаю маленький лайфхак — просто запомните слово ПРИМАТ. Мы с вами относимся к приматам, а буквы в этом слове расположены так же, как фазы митоза, начинающиеся с этих букв. Профаза, метафаза, анафаза и телофаза.

Читайте также  Чем пневмония отличается от воспаления легких?

Профаза

В профазе хромосомы спирализуются, из-за этого ядро и ядерная оболочка распадаются.

  • Хромосомы хаотично располагаются в цитоплазме.
  • Центриоли клеточного центра расходятся к полюсам и начинают формировать веретено деления.
  • Несмотря на то, что процессы идут достаточно активно, на набор ни один из них не влияет, и он остается прежним-—2n4c.

Метафаза

Пожалуй, самая красивая фаза митоза — метафаза. Ее частенько упоминают в фильмах и сериалах про школу, например в «Сумерках», потому что она лучше остальных фаз просматривается в микроскоп.

  • Хромосомы выстраиваются в линию друг за другом по экватору и формируют метафазную или экваториальную пластинку.
  • Нити веретена деления прикрепляются к центромерам хромосом. Получается, что каждая из них удерживается с двух полюсов.
  • Хромосомы поменяли только положение, набор в клетке не изменился – 2n4c

Анафаза

Активная и интересная фаза.

  • Нити веретена деления сокращаются и разрывают двухроматидные хромосомы, растаскивая сестринские хроматиды к противоположным полюсам клетки
  • Каждая из хроматид становится однохроматидной хромосомой с одной молекулой ДНК внутри
  • Количество хромосом увеличивается вдвое, а количество молекул ДНК не меняется. Набор 4n4c.

Телофаза

После того, как клетка разделила генетический материал по полюсам, она может приступить непосредственно к делению.

  • Происходит деспирализация хромосом
  • В будущих клетках формируются ядра и ядерные оболочки
  • Цитоплазма и органоиды распределяются поровну
  • Клетка делится надвое, в результате образуются две диплоидные клетки с набором 2n2c
  • Эти клетки не только идентичны друг другу, но и материнской клетке, которая вступила в деление изначально.

Зачем нужен митоз?

Как видите, фазы митоза для ЕГЭ достаточно просто запомнить, если понять, какие процессы происходят в каждой из них. Теперь давайте обсудим, зачем вообще нужен митоз.

У вас прямо сейчас растут волосы и ногти? Обновляется кожный покров или клетки крови? Если вы живы, смело отвечайте «да». Значит прямо сейчас клетки каждого из нас делятся митозом — он необходим для процессов роста, развития и регенерации.

Представьте себе: вы приходите в гости и видите потрясающей красоты фиалку, вам очень хочется иметь такую же у себя дома. Как вы поступите? Можно оторвать листик, принести его домой и поставить в воду. Через некоторое время клетки начинают делиться митозом, у листа появляются придаточные корни, а еще через пару месяцев у вас будет своя красивая фиалка. Фактически вы клонировали растение! Половые клетки в этом не играли никакой роли, а вот соматические активно делились. Одно из значений митоза — бесполое размножение.

Так как в результате митоза образуются одинаковые диплоидные клетки, благодаря такому делению поддерживается единый набор хромосом в организме. Все соматические клетки одного организма содержат одинаковое количество хромосом. Например, и в клетке волоса, и в клетке глаза человека 46 хромосом.

Задания на митоз в ЕГЭ по биологии

Задания на митоз в ЕГЭ по биологии встречаются и в первой, и во второй части. Каждое из таких заданий может принести вам от одного до трех баллов. Кстати, обязательно почитайте наш гайд для ЕГЭ по биологии 2021! Там мы рассказываем, какие задания и по каким темам вам могут встретиться.

Пример 1. В ядрах клеток слизистой оболочки кишечника позвоночного животного 36 хромосом. Какое число хромосом будет иметь ядро зиготы этого животного? В ответ запишите только соответствующее число.

Решение. Клетки слизистой оболочки кишечника — соматические, набор в них 2n. А что такое зигота? Это оплодотворенная яйцеклетка. В ней сливается гаплоидный набор сперматозоида и гаплоидный набор яйцеклетки, в результате набор становится диплоидным (2n). Соответственно, число хромосом в зиготе будет совпадать с набором в любой из соматических клеток. Ответ: 36.

Пример 2. Установите соответствие между процессами, происходящими на разных стадиях жизненного цикла клетки: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ПРОЦЕССЫ СТАДИИ
А) ускоренный метаболизм
Б) спирализация хромосом
В) удвоение количества органоидов
Г) образование веретена деления
Д) формирование экваториальной пластинки
Е) репликация ДНК
1) интерфаза
2) митоз

Решение. Вспомним, что интерфаза — это подготовительная стадия, которая проходит перед делением клетки, а митоз – непосредственно деление. В интерфазу происходит ускорение обмена веществ, удвоение ДНК и органоидов. Хромосомы спирализуются в профазу, тогда же образуется веретено деления. Хромосомы выстраиваются по экватору и формируют метафазную пластинку в метафазе.

Ответ: 121221

Пример 3. У крупного рогатого скота в соматических клетках 60 хромосом. Определите число хромосом и молекул ДНК в клетках печени перед началом деления и а анафазе митоза. Объясните полученные результаты на каждом этапе.

Решение. Набор хромосом и ДНК в соматической клетке 2n2c – 60 хромосом, 60 молекул ДНК.

Перед началом деления (в интерфазе) происходит репликация ДНК, набор 2n4c — 60 хромосом, 120 молекул ДНК. В анафазе набор 4n4с – 120 хромосом и 120 молекул ДНК, так как однохроматидные хромосомы расходятся к полюсам.

Как видите, задания на митоз в ЕГЭ по биологии вполне реально решить! Немного практики — и заветные баллы у вас в кармане. Если хотите разобраться в остальных темах, обязательно обратите внимание на курсы MAXIMUM. Приходите к нам на бесплатную консультацию по подготовке к ЕГЭ — чем раньше приступите к подготовке, тем больше будет времени, чтобы найти все слабые места и проработать их. Записывайтесь и начните путь к высоким баллам ЕГЭ уже сейчас!

СОМАТИЧЕСКИЕ И ПОЛОВЫЕ КЛЕТКИ

Соматическими называют клетки, составляющие тело (сому) многоклеточных организмов и не принимающие участия в половом размножении. Входя в состав разнообразных тканей тела, соматические клетки каждой ткани обладают специфическими структурными, метаболическими и химическими особенностями, которые приобретаются в процессе дифференцировки.

Гамета (gamete): зародышевая клетка (спермий или яйцеклетка), содержащая гаплоидный набор хромосом, то есть имеющая по одному экземпляру каждой из хромосом. При половом способе размножения потомство, как правило, имеет двух родителей.

Каждый из родителей производит половые клетки. Половые клетки, или гаметы, обладают половинным или гаплоидным набором хромосом и возникают в результате мейоза. Таким образом, гамета (от греч. gamete — жена, gametes — муж) — зрелая репродуктивная клетка, содержащая гаплоидный набор хромосом и способная при слиянии с аналогичной клеткой противоположного пола образовать зиготу, при этом число хромосом становится диплоидным. В диплоидном наборе каждая хромосома имеет себе парную (гомологичную) хромосому. Одна из гомологичных хромосом происходит от отца, другая — от матери.

Женская гамета называется яйцеклеткой, мужская — сперматозоидом.

Процесс образования гамет носит общее название — гаметогенез.

Сходство соматических и половых клеток:

1) Соматические и половые клетки имеют общее происхождение, так как образуются из генетически одинаковых эмбриональных клеток, которые содержат всю генетическую информацию, необходимую для образования клеток различных типов в ходе развития организма.

2) У соматических клеток возникают все виды мутаций, (в т. ч. под действием различных излучений) характерные и для половых клеток.

3)Частоты мутирования в половых и соматических клетках существенно не различаются. Половые клетки (гаметы) — это высокоспециализированные клетки для процесса полового размножения. Их отличия от соматических клеток:

1) Сперматозоиды и яйцеклетки имеют не диплоидный набор хромосом, как это свойственно соматическим клеткам, а гаплоидный, т. е. в два раза уменьшенное число хромосом. Так, соматические клетки пчелы имеют 32 хромосомы, а сформированные половые клетки—16. Соматические клетки человека имеют 46 хромосом, а сперматозоиды и яйца — 23.

2) У половых клеток резко измененное по сравнению с соматическими ядерно-плазменное отношение. Это очевидно на примере яиц птиц. Собственно, яйцом, яйцеклеткой птицы, считается только «желток». Объем желтка яиц птиц в миллионы раз превышает объем клетки, исходной в его развитии. Объем же ядра столь резко не изменяется. И если из массы цитоплазмы яйца птицы исключить вещества, которые как бы включены в нее. «про запас», для развития зародыша (желточные включения), и говорить о «чистой цитоплазме» (что не совсем правильно), все равно очевидно, что масса яйца сильно возрастает в объеме.

4) приспособленность к движению (сперматозоиды) и запасу питательных веществ для зародыша (яйцеклетка), стадии формирования (сперматогенез и овогенез),

5) почти полное отсутствие цитоплазмы, компактная укладка генетического материала в ядре, наличие акросомы ( видоизменённый аппарат Гольджи), большое количество митохондрий, шейка и хвост — наибольшая разница — в строении сперматозоидов, т.к. они выполняют функцию с выходом во внешнюю среду.

Половые клетки — гаметы (от греч. gametes — «супруг») можно обнаружить уже у двухнедельного эмбриона человека. Их называют первичными половыми клетками. В это время они совсем не похожи на сперматозоиды или яйцеклетки и выглядят абсолютно одинаковыми. Никаких различий, присущих зрелым гаметам, на этой стадии развития зародыша обнаружить у первичных половых клеток не удается. Это не единственная их особенность. Во-первых, первичные половые клетки появляются у зародыша гораздо раньше собственно половой железы (гонады), а во-вторых, они возникают на значительном удалении от того места, где эти железы сформируются позднее. В определенный момент происходит совершенно удивительный процесс — первичные половые клетки дружно устремляются к половой железе и заселяют, «колонизируют» ее.

Читайте также  Что лучше мидокалм или баклосан и чем они отличаются

После того, как будущие гаметы попали в половые железы, они начинают интенсивно делиться, и количество их увеличивается. На этом этапе половые клетки содержат пока то же количество хромосом, что и «телесные» (соматические) клетки — 46. Однако для успешного осуществления своей миссии половые клетки должны иметь в 2 раза меньше хромосом. В противном случае после оплодотворения, то есть слияния гамет, клетки зародыша будут содержать не 46, как установлено природой, а 92 хромосомы. Нетрудно догадаться, что в следующих поколениях их число прогрессивно бы увеличивалось. Чтобы избежать такой ситуации формирующиеся половые клетки проходят специальное деление, которое в эмбриологии называется мейоз (греч. meiosis — «уменьшение»). В результате этого удивительного процесса диплоидный (от греч. diploos — «двойной»), набор хромосом как бы «растаскивается» на составляющие его одинарные, гаплоидные наборы (от греч. haploos — одиночный). В результате из диплодной клетки с 46 хромосомами получаются 2 гаплоидные клетки с 23 хромосомами. Вслед за этим наступает завершающий этап формирования зрелых половых клеток. Теперь в гаплоидной клетке копируются имеющиеся 23 хромосомы и эти копии используются для образования новой клетки. Таким образом, в результате описанных двух делений из одной первичной половой клетки образуется 4 новых.

Образование и созревание сперматозоидов, как уже было сказано, происходит в семенных канальцах мужской половой железы — яичках. Сформированный сперматозоид имеет длину около 50-60 микрон. Ядро сперматозоида находится в его головке. Оно содержит отцовский наследственный материал. За головкой располагается шейка, в которой имеется крупная извитая митохондрия — органоид, обеспечивающий движения хвоста. Иначе говоря, это своеобразная «энергетическая станция». На головке сперматозоида есть «шапочка». Благодаря ей форма головки — овальная. Но, дело не в форме, а в том, что содержится под «шапочкой». «Шапочка» эта на самом деле является контейнером и называется акросомой, а содержатся в ней ферменты, которые способны растворять оболочку яйцеклетки, что необходимо для проникновения сперматозоида внутрь — в цитоплазму яйцеклетки. Если у сперматозоида нет акросомы, головка у него не овальная, а круглая. Эта патология сперматозоидов называется глобулоспермия (круглоголовые сперматозоиды). Но, беда опять не в форме, а в том, что такой сперматозоид не может оплодотворить яйцеклетку, и мужчина с таким нарушением сперматогенеза до начала 90-х прошлого столетия был обречен на бездетность. Сегодня благодаря ВРТбесплодие у этих мужчин может быть преодолено, но об этом мы расскажем позднее в главе, посвященной микроманипуляциям, в частности, ИКСИ.

Перемещение сперматозоида осуществляется за счет движения его хвостика. Скорость движения сперматозоида не превышает 2-3 мм в минуту. Казалось бы, немного, однако, за 2-3 часа в женском половом тракте сперматозоиды проходят путь, в 80000 раз превышающий их собственные размеры! Будь на месте сперматозоида в этой ситуации человек, ему пришлось бы двигаться вперед со скоростью 60-70 км/час — то есть со скоростью автомобиля!

Сперматозоиды, находящиеся в яичке, неподвижны. Способность к движению они приобретают лишь, проходя по семявыводящим путям под воздействием жидкостей семявыводящих протоков и семенных пузырьков, секрета предстательной железы. В половых путях женщины сперматозоиды сохраняют подвижность в течение 3 — 4 суток, но оплодотворить яйцеклетку они должны в течение 24 часов. Весь процесс развития от стволовой клетки до зрелого сперматозоида длится примерно 72 дня. Однако, поскольку сперматогенез происходит непрерывно и в него одномоментно вступает громадное число клеток, то в яичках всегда есть большое количество спермиев, находящихся на разных этапах сперматогенеза, а запас зрелых сперматозоидов постоянно пополняется. Активность сперматогенеза индивидуальна, но с возрастом снижается.

Как мы уже говорили, яйцеклетки находятся в фолликулах яичника. В результате овуляции яйцеклетка попадает в брюшную полость, откуда она «вылавливается» фимбриями маточной трубы и переносится в просвет ее ампулярного отдела. Именно здесь происходит встреча яйцеклетки со сперматозоидами.

Деление клетки

Деле́ние кле́тки — процесс образования из родительской клетки двух и более дочерних клеток. Обычно деление клетки — это часть большего клеточного цикла. У эукариот есть два различных типа деления клетки: вегетативное деление, при котором каждая дочерняя клетка генетически идентична родительской клетке (митоз), и репродуктивное клеточное деление, при котором количество хромосом в дочерней клетке снижается вдвое для производства гаметы (мейоз).

Митоз

Митоз — (реже: кариокинез или непрямое деление) — деление ядра эукариотической клетки с сохранением числа хромосом. В отличие от мейоза, митотическое деление протекает без осложнений в клетках любой плоидности, поскольку не включает как необходимый этап, конъюгацию, хромосом в профазе.

Период жизни клетки между двумя митозами называют интерфазой. Она в десятки раз продолжительнее митоза. В ней совершается ряд очень важных процессов, предшествующих делению клетки: синтезируются молекулы АТФ и белков, удваивается каждая хромосома, образуя две сестринские хроматиды, скрепленные общей центромерой, увеличивается число основных органоидов клетки.

процессе митоза различают четыре фазы: профазу, метафазу, анафазу и телофазу.

· I. Профаза — самая продолжительная фаза митоза. В ней спирализируются и вследствие этого утолщаются хромосомы, состоящие из двух сестринских хроматид, удерживаемых вместе центромерой. К концу профазы ядерная мембрана и ядрышки исчезают и хромосомы рассредоточиваются по всей клетке. В цитоплазме к концу профазы центриоли отходят к полосам и образуют веретено деления.

· II. Метафаза — хромосомы продолжают спирализацию, их центромеры располагаются по экватору (в этой фазе они наиболее видны). К ним прикрепляются нити веретена деления.

· III. Анафаза — делятся центромеры, сестринские хроматиды отделяются друг от друга и за счет сокращения нитей веретена отходят к противоположным полюсам клетки.

· IV. Телофаза — делится цитоплазма, хромосомы раскручиваются, вновь образуются ядрышки и ядерные мембраны. После этого образуется перетяжка в экваториальной зоне клетки, разделяющая две сестринские клетки.

Так из одной исходной клетки (материнской) образуются две новые — дочерние, имеющие хромосомный набор, который по количеству и качеству, по содержанию наследственной информации, морфологическим, анатомическим и физиологическим особенностям полностью идентичен родительским.

Рост, индивидуальное развитие, постоянное обновление тканей многоклеточных организмов определяется процессами митотического деления клеток.

Все изменения, происходящие в процессе митоза, контролируются системой нейрорегуляции, т. е. нервной системой, гормонами надпочечников, гипофиза, щитовидной железы и др.

Мейоз

Мейоз — это особый способ деления клеток, в результате которого происходит уменьшение числа хромосом вдвое в каждой дочерней клетке. Впервые он был описан Вальтером Флеммингом в 1882 году у животных и Эдуардом Страсбургером в 1888 году у растений. С помощью мейоза образуются гаметы. В результате редукции споры и половые клетки хромосомного набора получают в каждую гаплоидную спору и гамету по одной хромосоме из каждой пары хромосом, имеющихся в данной диплоидной клетке. В ходе дальнейшего процесса оплодотворения (слияния гамет) организм нового поколения получит опять диплоидный набор хромосом, то есть кариотип организмов данного вида в ряду поколений остается постоянным.

Он состоит и двух последовательно идущих делений, имеющих те же фазы, что и митоз. Однако продолжительность отдельных фаз и происходящие в них процессы значительно отличаются от процессов, происходящих в митозе.

Эти отличия в основном состоят в следующем. В мейозе профаза I более продолжительна. В ней происходит конъюгация (соединение) хромосом и обмен генетической информацией. (На рисунек вверху профаза отмечена цифрами 1, 2, 3, конъюгация показана под цифрой 3). В метафазе происходят те же изменения, что и в метафазе митоза, но при гаплоидном наборе хромосом (4). В анафазе I центромеры, скрепляющие хроматиды, не делятся, а к полюсам отходит одна из гомологичных хромосом (5). В телофазе II образуются четыре клетки с гаплоидным набором хромосом (6).

Интерфаза перед вторым делением у мейоза очень короткая, в ней ДНК не синтезируется. Клетки (гаметы), образующиеся в результате двух мейотических делений, содержат гаплоидный (одинарный) набор хромосом.

Полный набор хромосом — диплоидный 2n — восстанавливается в организме при оплодотворении яйцеклетки, при половом размножении.

Дата добавления: 2021-02-10 ; просмотров: 16 ; Мы поможем в написании вашей работы!

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: