Резина и каучук — чем они отличаются

Резина и каучук — чем они отличаются

Эластичные материалы знакомы человеку с давних времен. Они тогда применялись преимущественно в бытовых целях. Сегодня без резины и каучука трудно представить развитие промышленности, транспорта и строительства и связи, повседневную жизнь людей.

Что появилось раньше

Еще до того, как Америку открыли европейцы, индейцы, жившие там, пользовались каучуком. Его получали из сока тропической гевеи. Высушенный сок коптили, получая непромокаемый и упругий материал. Он шел на изготовление емкостей для воды, игрушек, предметов культа. Из него делали примитивную обувь и одежду.

В середине XVIII века каучук путешественники привезли в Европу. Однако долго не могли найти способ его применения. За исключением стирающих карандаш ластиков. Считалось, что из-за его высыхания и затвердевания он не имеет перспектив практического применения. В следующем веке появились непромокаемые ткани, сумки и галоши, которые твердели в холодную погоду и становились мягкими в тепле.

Через сотню лет после появления каучука в Старом Свете был придуман способ, позволивший сделать эластичность этого материала устойчивой. Он получил название вулканизации. Его суть в смешивании сырого каучука с серой и дальнейшим разогревом этой смеси. Получившийся продукт стали называть резиной. Она начала широко использоваться в качестве уплотнителя и электроизолятора. В начале ХХ века в связи с ростом потребности в резине была решена проблема производства синтетических каучуков в промышленно развитых странах.

Куда идет латекс

Натуральный каучук добывают из каучуконосных деревьев, которые растут в тропических лесах или на специальных плантациях. Такое дерево начинает давать сок через семь лет. Для этого на нем ножом делается спиралевидное углубление, по которому в емкость попадает вытекающий сок белого цвета, называемый латексом. Спустя несколько часов набирается примерно полторы сотни граммов. После загустевания и высыхания образуются комочки натурального каучука. Такую процедуру можно проводить раз в два дня.

Всего в мире натуральный каучук достигает 40% в общем производстве и потреблении всех видов каучуков. Это примерно 9 млн. тонн.

Необработанный каучук растворяется в бензине, образуя каучуковый клей, и других органических растворителях. После вулканизации он только набухает, а не растворяется.

Кроме бензина он растворяется в бензоле, хлороформе, сероуглероде и других углеводородах. Он практически не растворяется и не набухает в спирте, воде и ацетоне.

Свыше половины натурального каучука идет на производство автошин. В странах Юго-Восточной Азии (Вьетнам, Индонезия, Малайзия и Таиланд) организовано крупномасштабное его производство.

Как делают резину

Оба эластичных материала неразрывно связаны. Резину получают из натурального или синтетического каучука в результате вулканизации. Добавляется наполнитель, которым чаще всего является сажа. Нагретый до 130-160 градусов каучук начинает взаимодействовать с серой. Во время этого технологического процесса молекулы каучука сшиваются в единую сетку с помощью атомов серы. Это резко повышает его эластичность и твердость, прочностные качества. Регулируется набухаемость и растворимость органическими растворителями.

Помимо серы для вулканизации применяются оксиды металлов, соединения аминного типа, убыстряющие процесс катализаторы, и другие химические компоненты. Они обеспечивают нужную пластичность, свойства против старения и другие эксплуатационные качества. В результате каучук превращается в резину. В зависимости от содержания серы образуется материал разной степени упругости. Самой мягкой получается резина с минимальным содержанием серы, а самой твердой та, в которой она составляет треть и более.

При изготовлении резины ей задаются определенные качества для производства изделий из нее:

  • Кислотостойкость.
  • устойчивость в агрессивных средах.
  • Маслобензостойкость.
  • устойчивость против высоких и низких температур.
  • Озоностойкость.
  • Электропроводимость и пр.

Резина широко применяется для изготовления шин для транспортных средств, различных шлангов и уплотнителей, лент транспортеров, бытовых, гигиенических и медицинских товаров.

В чем сходство и разница

Резина и каучук схожи, прежде всего, своей эластичностью и тем, что они могут перерабатываться. Их отличия существеннее.

  1. Не пригоден для промышленного производства. В мире применяют не более 1% добываемого натурального каучука. В основном в виде резинового клея.
  2. У него низкая прочность, и высокая липучесть, которая сильно проявляется при высокой температуре. На морозе он твердеет и ломается. Полезные качества он приобретает только после вулканизации.
  3. При комнатной температуре начинается его старение, следствием которого становится потеря прочности и эластичности.
  4. Когда температура поднимается до 200 градусов, он разлагается с образованием низкомолекулярных углеводородов.
  5. Растворяется органическими растворителями типа бензина.
  6. Служит сырьем для производства резины.

Резина, полученная в результате вулканизации каучуков, служит для массового производства многих тысяч наименований различных изделий.

Из нее изготавливают:

  1. Шины для транспортных средств и авиационной техники.
  2. Разнообразные уплотнители, применяемые в промышленности и строительстве, различных видах техники.
  3. Электроизоляционные материалы.
  4. Приводные ремни, рукава для подачи жидкостей.
  5. Напольные покрытия и изолирующие пластины.
  6. Резиновую обувь и водоустойчивую одежду.
  7. Средства защиты от химического, радиационного и бактериологического воздействия (костюмы, перчатки, сапоги и пр.).
  8. Изделия медицинской техники и гигиены.
  9. Фурнитуру для одежды и пр.

Резина

Кроме сложных веществ наподобие полиэтиленов, представляющих из себя высокомолекулярные полимеры, существует класс химических веществ, который образован сопряжёнными диенами.

После процесса полимеризации диенов образуются новые химические вещества, имеющие высокомолекулярную структуру, называемые каучуками.

Каучук был уже известен в конце 15 веке в северной Америке. Именно индейцы в то время использовали его для изготовления обуви, небьющихся вещей и посуды. А получали тогда его из сока растения гевеи, который называли – «слёзы дерева».

Что касается европейцев, то о каучуке узнали впервые только в момент открытия Америки. Именно Кристофор Колумб первым узнал о его свойствах и получении. В Европе каучук долгое время не мог найти себе применение. В 1823 г в первые было предложено использование этого материала для изготовления водонепроницаемых плащей и одежды. Каучуком и органическим растворителем пропитывали ткань, таким образом, ткань приобретала водостойкие свойства. Но, конечно же, был замечен и недостаток, который заключался в том, что ткань, пропитанная каучуком, прилипала в жаркую погоду к коже, а при морозе – растрескивалась.

Отличие каучука и резины

Через 10 лет после первого применения натурального каучука и более детального изучения его химических физических свойств было предложено вводить каучук в оксиды кальция и магния. А ещё через 5 лет после изучения свойств нагретой смеси оксидов свинца и серы с каучуком научились получать резину. Сам процесс превращения каучука в резину назвали вулканизацией.

Конечно же, каучук отличается от резины. Резина – это «сшиты» полимер, который способен распрямляться и снова сворачиваться при растяжении и при действии механической нагрузки. Резина – это также «сшитые» макромолекулы, которые не способы к кристаллизации при охлаждении и не плавятся при нагревании. Тем самым резина – более универсальный материал, чем каучук, и способен сохранять свой механические и физические свойства про более широком диапазоне температур.

В начале 20 века, когда появился первый автомобиль, спрос на резину значительно возрос. В то же время возрос спрос и на натуральный каучук, так как на тот момент вся резина изготавливалась из сока тропических деревьев. Например, чтобы получить тонну резины, необходимо было обработать почти 3 тонны тропических деревьев, при этом работой было занято одновременно более 5 тысяч человек, причём такую массу резины могли получить только через год.

Поэтому, резина и натуральный каучук считались достаточно дорогим материалом.

Только в конце 20х годов русским учёным Лебедевым С.В. при химической реакции — полимеризации бутадиена-1,3 на натриевом катализаторе были получены образцы первого натрий-бутадиенового синтетического каучука.

Кстати, из курса физики 8-ого класса мы, вероятно, впервые познакомились с эбонитовой палочкой. Но что такое эбонит. Как оказывается, эбонит — это производная от процесса вулканизации каучука: если при вулканизации каучука добавить серу (около 32% от массы), то в результате получается твёрдый материал — этот материал и есть эбонит!

Читайте также  Чем отличается гостиница от гостевого дома

Одним из достаточно дешёвых способов получения бутадиена-1,3, является его получение из этилового спирта. Но только в 30-х годах было налажено промышленное производство каучука в России.

реакция получения бутадиена

В середине 30-х годов 20 века научились производить сополимеры, представляющие полимеризованный 1,3-бутадиен. Химическая реакция производилась в присутствии стирола или некоторых других химических веществ. Вскоре получаемые сополимеры начали с большими темпами вытеснять каучуки, которые ранее широко использовались для производства шин. Каучук бутадиен-стирольный получил широкое применение для производства шин легковых автомобилей, но для тяжёлого транспорта — грузовых автомобилей и самолётов, использовался натуральный каучук (или изопреновый синтетический).

В середине 20 века после получения нового катализатора Циглера — Натты был получен синтетический каучук , который по своим свойствам эластичности и прочности значительно выше, чем все ранее известные каучуки, — был получен полибутадиен и полиизопрен. Но как оказалось, к общему удивлению полученный синтетический каучук по своим свойствам и строению подобен натуральному каучуку! А к концу 20 века натуральный каучук был почти полностью вытеснен синтетическим.

Свойства каучука

Все хорошо знают, что при нагревании материалы способны расширяться. В физике даже имеются коэффициенты температурного расширения, для каждого взятого материала этот коэффициент свой. Расширению поддаются твёрдые тела, газы, жидкости. Но что, если температура увеличилась на несколько десятков градусов?! Для твёрдых тел изменений мы не почувствуем (хотя они есть!). Что касается высокомолекулярных соединений, например полимеров, их изменение сразу становится заметным, особенно если речь идёт об эластичных полимерах, способных хорошо тянуться. Заметным, да ещё к тому же с совсем обратным эффектом!

Ещё в начале 19 века английские учёные обнаружили, что растянутый жгут из нескольких полосок натурального каучука при нагревании уменьшался (сжимался), а вот при охлаждении — растягивался. Опыт был подтверждён в середине 19 века.

Вы сами с лёгкостью можете повторить этот опыт, подвесив на резиновую ленту грузик. Она растянется под его весом. Потом обдуйте её феном — увидите, как она сожмётся от температуры!

Почему так происходит?! К этому эффекту можно применить принцип Ле Шателье, который гласит, что если воздействовать на систему , находящуюся в равновесии, то это приведёт к изменению равновесия самой системы, а это изменение будет противодействовать внешним силовым факторам. То есть если на растянуть под действием груза жгуты каучука (система в равновесии) подействовать феном (внешнее воздействие), то система выйдет из равновесия (жгут будет сжиматься), причём сжатие — действие направлено в обратную сторону от силы тяжести груза!

При очень резком и сильном растяжении жгута он нагреется (нагрев может на ощупь быть и незаметным), после растяжения система будет стремиться принять равновесное состояние и постепенно охладится до окружающей температуры. Если жгуты каучука также резко сжать — охладится, далее будет нагреваться до равновесной температуры.

Что происходит при деформации каучука?

При проведённых исследованиях оказалось, что с точки зрения термодинамики, никакого изменения внутренней энергии при различных положениях (изгибах) этих каучуковых жгутов не происходит. А вот если растянуть — то внутренняя энергия увеличивается из-за возрастания скорости движения молекул внутри материала. Из курса физики и термодинамики известно, что изменение скорости движения молекул материала (тот же каучук) отражается на температуре самого материала.

дальнейшем, растянутые жгуты каучука будут постепенно охлаждаться, так как движущиеся молекулы будут отдавать свою энергию, например, рукам и другим молекулам, то есть произойдёт постепенное выравнивание энергии внутри материала между молекулами (энтропия будет близка к нулю).

И вот теперь, когда наш жгут каучука принял температуру окружающей среды, можно снять нагрузку. Что при этом происходит?! В момент снятия нагрузки молекулы каучука ещё имеют низкий уровень внутренней энергии (они же ей поделились при растяжении!). Каучук сжался — с точки зрения физики была совершена работы за счёт собственной энергии, то есть своя внутренняя энергия (тепловая) была затрачена на возврат в исходное положение. Естественно ожидать, что температура должна понизится, — что и происходит на самом деле!

Резина — как уже говорилось, высокоэластичный полимер. Её структура состоит из хаотично расположенных длинных углеродным цепочек. Крепление таких цепочек между собой осуществлено с помощью атомов серы. Углеродные цепочки в нормальном состоянии находятся в скрученном виде, но если резину растянуть, то углеродные цепочки будут раскручиваться.

Можно провести интересный опыт с резиновыми жгутами и колесом. Вместо велосипедных спиц в велосипедном колесе использовать резиновые жгуты. Такое колесо подвесить, чтобы оно могло свободно вращаться. В случае, если все жгуты одинаково растянуты, то втулка в центре колеса будет расположена строго по его оси. А теперь попробуем нагреть горячим воздухом какой-нибудь участок колеса. Мы увидим, что та часть жгутов, которая нагрелась — сожмётся и сместит втулку в свою сторону. При этом произойдёт смещение центра тяжести колеса и соответственно колесо развернётся. После его смещения действию горячего воздуха подвергнутся следующие жгуты, что в свою очередь приведёт к их нагреванию и снова — к повороту колеса. Таким образом, колесо может непрерывно вращаться!

Это опыт подтверждает факт того, что при нагревании каучук и резина будут сжиматься, а при охлаждении — растянутся!

Каучук: свойства, виды, применение

В составе млечного сока некоторых растений содержится латекс. Именно на основе этой белой жидкости и создается каучук. Данный материал обладает эластичностью, он не проницаем для воды и не проводит электрический ток. Сегодня производится не только натуральный каучук, но и его разнообразные синтетические аналоги. Все они сырье для изготовления изоляционных материалов, обуви и одежды, шин.

Каучук: история открытия

Если бы мы могли спросить, что такое каучук, у индейцев, то они бы ответили, что это слезы деревьев. Именно так дословно переводится данный термин с древнего языка тупи-гуарани. До открытия Америки европейцы о таком чудесном материале ничего не слышали. В Новом Свете они впервые увидели мячи, обувь и прочие изделия из эластичного и прочного материала.

Чем отличается парфюмерная вода от туалетной воды, духов и одеколона

Всё дело в том, что уникальное каучуковое дерево — источник каучука — произрастает только на экваторе, в небольшом поясе в 1500 км шириной. В так называемой гевее бразильской содержится много латекса, и она легко отдает его человеку.

В наших широтах похожим млечным соком обладают одуванчики, молочай и полынь. Однако ни его количество, ни качество не позволяют производить из него каучуки. Вот почему только древним народам американского континента этот материал оказался отлично знаком, а история открытия каучука связана с эпохой географических открытий.

Вскоре предприимчивые европейцы научились выращивать гевею в промышленных масштабах и распространили уникальное сырье по всему миру. Более того, в 1839 году на основе каучука была синтезирована резина. Ученый Чарльз Гудьир попробовал нагревать его с серой и получил еще более прочный и удобный материал. Процесс назвали вулканизацией, а резиновые изделия быстро покорили планету.

Лимонный пирог: пошаговый рецепт с фото

Каучук: свойства

Какими качествами наделен природный каучук? Этот полимер абсолютно уникален и меняет свои свойства в зависимости от температуры окружающей среды. Он может быть и высокоэластичным, и текучим, и даже стеклообразным.

В диапазоне от 20 до 30 °С для материала характерны:

  • белая окраска или отсутствие цвета;
  • аморфная рыхлая структура;
  • способность растворяться только в бензине, бензоле, эфире;
  • нерастворимость в воде и спиртах.

Среди важных свойств каучука следует отметить:

  • упругость и эластичность. Каучуковое изделие можно растянуть на 1000%, и даже после этого оно быстро возвращается в исходное состояние. Данное качество теряется только при очень длительном хранении;
  • мягкость при комнатной температуре и проявление пластичности при нагревании. Если подобрать правильные условия работы с материалом, то форму, полученную при его тепловой обработке, удастся сохранить;
  • непроницаемость для электричества, тепла, газов и воды. Это свойство делает применение каучука очень удобным во всех сферах. Изготовленные из него изделия обладают длительным сроком хранения и мало подвержены воздействиям окружающей среды.
Читайте также  Чем отличается розовая пилка шолль (scholl) от голубой

Как отбелить белые вещи от желтизны

Вот почему ни один из известных ранее материалов не смог сравниться с каучуком и тем более конкурировать с ним.

Каучук: виды и применение

Два основных вида данного материала — это природный и синтетический каучук. Последний в свою очередь сегодня представлен широким разнообразием подвидов. Всё дело в том, что не так-то просто выращивать специальные деревья и добывать их млечный сок. На это также требуется много времени. Поэтому с момента знакомства с каучуком ученые начали искать способы производства его искусственных заменителей.

Первой молекулой, на основе которой ученым удалось создать синтетический аналог каучука, стал 1,3-бутадиен. Полученный дивиниловый каучук по свойствам оказался очень похож на натуральный. Резина, полученная после его вулканизации, также была прочной, пластичной и эластичной. Из нее начали изготавливать обувь, шины, ленты для конвейеров и медицинские изделия.

Шеллак для ногтей: что это, как носить, плюсы и минусы

По аналогичному принципу ученые разработали также бутадиен-стирольный, бутадиен-нитрильный, винилпиридиновый и изопреновый каучук. Свойства каждого нового полимера несколько отличались и позволяли расширить области их применения.

Далее ассортимент каучуков расширился за счет введения в структуру молекул новых фрагментов, а именно появился:

  • кремнийорганический каучук. Из него изготавливают трубки для переливания крови, искусственные сердечные клапаны, а также кабель и провода;
  • полиуретановый каучук. Необходим для получения износостойкой резины;
  • фторсодержащий каучук. В отличие от природного аналога не разрушается даже при температуре выше 200 °C;
  • хлоропреновый каучук. Устойчив к действию окислителей и большинства растворителей.

Также сегодня известны неорганический, вспененный каучук и многие другие виды.

Что касается применения, то синтетические каучуки, наряду с натуральными, широко используются в производстве резины. Последняя важна в изготовлении обуви и одежды, искусственной кожи, медицинских изделий, военных деталей, шин для автомобилей, изоляционных материалов и многого другого. К примеру, сегодня модным украшением стал каучуковый браслет.

Вустерский соус: рецепт в домашних условиях

Природа приготовила для человека много загадок. Их понимание всегда выводило цивилизацию на новый уровень. Так произошло и с каучуком. Ученым удалось не только исследовать уникальный материал, но и создать его искусственные аналоги, а вместе с тем — индустрию резиновых изделий.

Узнавайте обо всем первыми

Подпишитесь и узнавайте о свежих новостях Казахстана, фото, видео и других эксклюзивах.

Каучуки и резины

В рецептуре покрытий применяются каучуки различной природы. Выбор того или иного каучука зависит от требований, предъявляемых к тканям с покрытиями.

Сравнительные свойства основных каучуков приведены в таблице2.11. В связи с тем что информация о свойствах изложена в многочисленных публикациях, книгах, на сайтах производителей и потребителей каучуков и вполне доступна, основное внимание при обсуждении свойств каучуков будет уделено некоторым их особенностям, определяющим их применение в рецептуре покрытий, а также недостаткам, которые необходимо учитывать.

Натуральный каучук.

Натуральный каучук, состоящий на 90 % из цис-полиизопрена, был первым каучуком, применяемым для нанесения покрытий на ткани и изготовления конфекционных клеев. Основные достоинства натурального каучука, обеспечившие широкое его применение по сегодняшний день – хорошие прочностные свойства наполненных и ненаполненных резин на его основе, стойкость к истиранию, многократному изгибу, высокая эластичность, хорошая морозостойкость. Высоким прочностным показателям каучук обязан кристаллизации, она же создает некоторые проблемы при его переработке. Перед пуском в производство каучук подвергают декристаллизации при 50-80 о С в течение 24-70 ч, пластицируют в резиносмесителях, червячных машинах или на вальцах. После такой обработки процесс смешения натурального каучука с наполнителями, мягчителями и другими ингредиентами не представляет трудности. Вулканизация проводится серой в присутствии ускорителей вулканизации при температурах 143-151 о С (при избыточном давлении пара 3-4 кгс/см 2 ). Прорезиненные ткани – мягкие, легко склеиваются клеем на основе натурального каучука. Натуральный каучук (светлый креп) разрешен к использованию в рецептурах пищевых и медицинских резин, поэтому применяется при изготовлении, например, прорезиненных тканей для резервуаров питьевой воды, тканей или изделий из них, контактирующих с кожей человека.

Благодаря высокой когезионной прочности натурального каучука клеи на его основе очень технологичны. Швы имеют высокую начальную прочность в невулканизованном состоянии, а если учесть высокую прочность швов после вулканизации (самовулканизации), то придется признать, что ни один из неполярных каучуков не может составить ему конкуренции.

Недостатки натурального каучука связаны с его непредельностью и неполярностью: малая устойчивость к старению, плохая атмосферостойкость, низкая маслобензостойкость. Сопротивление старению и атмосферостойкость можно улучшить правильным рецептуростроением.

Изопреновый каучук.

Синтетический цис-полиизопрен (СКИ-3) – аналог натурального каучука, но во многом ему уступает. Содержание 1,4-цис-звеньев у СКИ-3 составляет 93-98 % против 98-100 % у НК, доля 1,4-звеньев, присоединенных нерегулярно («голова-голова», «хвост-хвост») составляет 2-4 и 0 % соответственно. НК содержит природные добавки, защищающие его в определенной мере от старения и отсутствующие в СКИ-3. СКИ-3 существенно уступает НК по степени кристаллизации и, следовательно, по когезионной прочности резиновых смесей. Тем не менее СКИ-3 нашел свое применение в тканях с покрытиями, но чаще в комбинации с другими каучуками, особенно, СКД.

Бутадиеновые каучуки .

В России изготавливаются бутадиеновые каучуки двух основных типов – с преимущественным содержанием 1,2- и 1,4-звеньев. Внутри каждого из этих типов существуют различные марки каучуков.

Каучуки СКБ с 1,2-звеньями изготавливаются полимеризацией бутадиена в присутствии натриевого катализатора, поэтому называются натрий-бутадиеновыми. Благодаря отсутствию двойных связей в основной цепи они имеют хорошую стойкость к тепловому старению. Кроме того, они очень технологичны, хорошо смешиваются с ингредиентами, допускают получение высоконаполненных смесей без существенного ухудшения эластичности. Ткани с покрытиями на основе СКБ обладают мягкостью, высокой морозостойкостью, хорошей стойкостью к многократному изгибу. Основные недостатки каучука (низкая прочность, плохая стойкость к истиранию) связаны с низкой кристаллизацией, плохая маслобензостойкость – с химическим строением. С использованием СКБ-55, 60 выпускался большой ассортимент прорезиненных тканей и не для всех удалось найти альтернатив­ную замену. Поэтому и сейчас Казанским заводом СК выпускаются каучуки марок СКБ-30, СКБ-40 и СКБ-50.

В 70-х годах была поставлена задача замены «морально устаревшего» каучука СКБ. Был синтезирован и запущен в серийное производство на Ефремовском заводе РТИ каучук СКД-СР различных марок с содержанием 1,2-звеньев от 40 до 70 %, в том числе маслонаполненный. Для прорезиненных тканей начал с успехом применяться каучук СКД-СР-М-10. В настоящее время его выпуск практически прекращен из-за малого спроса. При большом спросе на другие типы каучуков, в том числе поставляемых на экспорт, малотоннажное производство СКД-СР оказалось попросту экономически невыгодным.

Цис-1,4-полибутадиеновые каучуки (СКД) в рецептуре покрытий используется в комбинации с другими каучуками – полиизопреновым, бутадиенстирольным и др. Связано это, в первую очередь, с его неудовлетворительными технологическими свойствами – плохой перерабатываемостью, низкой когезионной прочностью и клейкостью. В смесях же с другими каучуками эти проблемы благополучно решаются и реализуются уникальные свойства СКД – высокая морозостойкость и износоустойчивость.

Бутадиенстирольные каучуки .

Бутадиенстирольные каучуки получают сополимеризацией бутадиена со стиролом (СКС) или α-метилстиролом (СКМС). Каучуки выпускают с различным содержанием стирола. В производстве прорезиненных тканей используется преимущественно СКС-30АРКМ-15 и СКМС-30АРКМ-15 с содержанием стирола 30 % масс. и масла 15 % масс. Остальные буквенные обозначения расшифровываются так: А- «холодный (получение при 5 о С), Р- каучук содержит регулятор степени полимеризации, обеспечивающий заданную вязкость по Муни, К – в качестве эмульгатора использовались соли кислот диспропорционированной (гидрированной) канифоли. Маслонаполненные каучуки достаточно технологичны, доступны, недороги, поэтому широко применяются в производстве прорезиненных тканей. Стойкость к тепловому старению выше, чем у натураль­ного каучука. Из-за некристаллизуемости каучуки обладают низкой когезионной прочностью, низкой прочностью вулканизатов (особенно ненаполненных). Как и другие неполярные каучуки они имеют плохую стойкость к маслам и углеводородным растворителям.

Читайте также  Чем отличается 4g от lte: особенности и отличия

Этиленпропиленовые каучуки.

Этиленпропиленовые каучуки получают сополимеризацией этилена и пропилена (СКЭП) или этилена, пропилена и диена (СКЭПТ). В качестве третьего мономера обычно используется дициклопентадиен, реже – 2-этилиден-5-нонборнен и гексадиен-1,4-метилтетраинден. Чаще в рецептурах покрытий тканей используются тройные сополимеры, для которых возможна серная вулканизация, с содержанием пропилена 30 (СКЭПТ-30) или 40 % (СКЭПТ-40).

Из-за очень малого содержания двойных связей этиленпропилендиеновые каучуки обладают исключительно высокой стойкостью к тепловому и атмосферному старению, воздействию окислителей, озона, растворов кислот, щелочей и других агрессивных сред. Они имеют низкую удельную плотность и высокую морозостойкость. Как и другим неполярным каучукам, СКЭПТ свойственна низкая стойкость к углеводородным растворителям. При оценке свойств каучука в качестве основного компонента покрытия тканей следует особо отметить низкую адгезию и низкую скорость вулканизации. Этим свойствам, как и основным своим преимуществам, каучук обязан малому содержанию двойных связей. Для повышения адгезии используются смолы и различные модификаторы адгезии. Отрицательное влияние низкой скорости вулканизации проявляется при использовании полиэфирных тканей в качестве подложки. Для увеличения скорости вулканизации СКЭПТ в резиновую смесь вводят ускорители, содержащие аминные группы или образующие их в процессе вулканизации. Именно они в результате конкурентной реакции аминолиза эфирных связей вызывают разрыв макромолекул полиэтилентерефталата и существенное падение прочности тканей. На практике нами отмечалось снижение прочности прорезиненных тканей после вулканизации до 50 %, в литературе же сообщается о ее снижении на 80 % [ 58 ]. Степень такого вредного воздействия напрямую зависит от аминного числа ускорителя (доля азота аминного типа) и его содержания. Следует отметить, что падение прочности может происходить не только при вулканизации, но и в процессе теплового старения материала. В таблице 2.12 приводятся расчетные амино-азотные индексы некоторых ускорителей, показывающие количество азота, который реально может быть переведен в амины в ходе вулканизации, в расчете на грамм ускорителя:

Общий индекс вулканизующей системы равен сумме индексов компонентов, помноженных на из массовую долю. Исследования показали, что при температуре 160 о С в течение 2 часов прочность полиэфирного корда уменьшается на 60 % при использовании ускорителей с общим индексом 10-15, на 80 % — при индексах от 25 и выше.

Подробное изучение поведения полиэфирного корда в контакте с резинами на основе этиленпропилендиенового каучука привело авторов к выводу, что на потерю прочности влияют три основных фактора – наличие влаги, природы вулканизующей системы и условий вулканизации и теплового старения. Разрушение полиэфирного корда вызвано гидролизом, катализируемым аминами. С повышением температуры разрушение ускоряется. Наиболее эффективный метод устранения падения прочности – отказ от ускорителей вулканизации аминного типа. Это всегда необходимо учитывать при разработке полиэфирных тканей с резиновыми покрытиями на основе СКЭПТ.

При применении полиамидных, вискозных и т.д. тканей таких проблем не замечено.

«Ткани с эластомерным покрытием для мягких оболочечных конструкций»

Авторский коллектив; Л.Е. Ветрова, к.х.н В.Ф. Ионова, П.В. Таскаева, к.т.н. А.Т. Титаренко, к.т.н. В.П. Шпаков

Каучуки и резины

Каучуки являются представителем особого вида органических веществ – это эластомеры. Основные особенности этого класса полимеров – очень высокая упругая деформация и малый модуль упругости. Если для металлических материалов упругая деформация составляет около 0,1%, для большинства полимеров ее значения при нормальных температурах не превышают 2. 5%, то эластомеры могут растягиваться на 1000%. Это означает, что при нормальных температурах эластомеры (каучуки) находятся в высокоэластичном состоянии.

Такая исключительно высокая упругость объясняется тем, что макромолекулы в ненапряженном, равновесном состоянии имеют изгибы, витки, петли (рис. 12.5). Под действием приложенной нагрузки макромолекулы вытягива-

Рис. 12.5. Форма макромолекулы эластомера (схема)

ются, т.е. первоначальное удлинение происходит за счет распрямления макромолекулы, а не за счет растягивания связей между ее звеньями. Поэтому уже при небольших усилиях достигается значительная деформация, т.е. значения модуля упругости малы.

В процессе приложения нагрузки, по мере того как макромолекулы вытягиваются, их деформация требует больших усилий. После окончательного распрямления макромолекул деформация реализуется только путем растягивания связей между их звеньями, т.е. определяется силой ковалентных связей, что требует приложения больших напряжений. В результате по мере удлинения изменяется значение модуля упругости эластомера (он возрастает очень сильно – в 1000 раз, примерно от 10 до 10 000 МПа), т.е. материал не подчиняется закону Гука и зависимость между деформацией и напряжением не прямолинейная (рис. 12.6).

Естественными эластомерами являются натуральные каучуки (НК), их получают из сока растений гевеи бразильской, кок-сагыза, тау-сагыза. Каучуки могут быть также синтезированными (СК). Наиболее распространены натрий-бутадиеновый (СКВ), бутадиен-стирольный (CKC) каучуки.

Каучуки являются линейными полимерами. Они отличаются очень высокой эластичностью, однако из-за отсутствия поперечных межмолекулярных связей подвержены ползучести, после растяжения сохраняется заметная остаточная деформация. Каучуки являются исходным сырьем для получения резины.

Резины продукт химической переработки каучуков, получаемый в результате вулканизации. Наиболее распространенным вулканизатором является сера. В процессе вулканизации (нагрев в парах серы) линейная

Рис. 12.6. Кривая растяжения эластомера

структура каучука (рис. 12.7, а) превращается в пространственную. Это объясняется тем, что сера, вступая в реакцию с атомами углерода, имеющими до вулканизации двойные связи, соединяет макромолекулы (рис. 12.7, б). При этом появляются точки скрепления (рис. 12.7, в). В результате вулканизации термопласт превращается в реактопласт, т.е. материал с пространственной структурой. Относительное перемещение макромолекул становится невозможным, поэтому остаточной деформации нс возникает.

В зависимости от количества вводимой серы у полимера достигается различная частота сетки и разные свойства. При содержании серы до 5% образуется редкая сетка и резина получается мягкой, эластичной. При увеличении количества серы твердость резины растет, а при содержа-

Рис. 12.7. Вулканизация каучука:

а – каучук до вулканизации; б – вулканизированный каучук; в – точки скрепления

нии S в количестве 30% насыщаются все связи и образуется твердый материал – эбонит.

Помимо каучука (НК или СК) и вулканизатора в состав резины входят:

  • противостарители (антиоксиданты) – вещества, препятствующие окислению резины. Они связывают кислород, диффундировавший в резину (химические), или образуют защитные пленки, предохраняющие от окисления (физические), – парафин, воск;
  • пластификаторы, облегчающие переработку резиновой смеси, – парафин, вазелин и др.;
  • наполнители – активные (сажа, оксиды кремния и цинка) участвуют в образовании трехмерной структуры и поэтому повышают свойства; инертные (мел, тальк) вводятся для удешевления;
  • красители минеральные или органические выполняют декоративную роль; кроме того, поглощая коротковолновую часть солнечного спектра, задерживают световое старение резины.

В процессе эксплуатации резиновые изделия подвержены различным видам старения (световое, озонное, тепловое и др.), в результате происходят необратимые изменения свойств. Скорость старения в напряженном состоянии выше, чем в свободном.

Повышение температуры снижает прочность резин; рабочая температура нетеплостойких резин не превышает 150 °С, специальных теплостойких достигает 320 °С.

При низких температурах (ниже температуры Г.) происходит переход резины в стеклообразное состояние и потеря эластичных свойств. Специальные хладостойкие резины можно эксплуатировать при отрицательных температурах от -30 до -80 °С.

По назначению резины подразделяются на резины общего назначения и специальные (табл. 12.3).

К резинам общего назначения относятся НК, СКВ, СКС, СКИ. НК – на основе натурального каучука, СК – синтетического (последняя буква марки характеризует полимер – основу каучука): СКВ – бутадиеновый, СКС – бутадиенстирольный и др. Из резин общего назначения изготавливают ремни, рукава, транспортные ленты, прокладки (низкий модуль упругости определяет высокие виброгасящие свойства) и др.

Таблица 123

Физико-механические свойства резин

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: