Чем ядерная реакция отличается от термоядерной

Чем ядерная реакция отличается от термоядерной В принципе, словосочетания «ядерная реакция» и «термоядерная реакция» могут трактоваться по-разному, однако в интересующем нас контексте под

Чем ядерная реакция отличается от термоядерной

Чем ядерная реакция отличается от термоядерной

В принципе, словосочетания «ядерная реакция» и «термоядерная реакция» могут трактоваться по-разному, однако в интересующем нас контексте под этими терминами обычно принято понимать в первом случае «реакцию деления ядер» (nuclear fission), а во втором — «реакцию синтеза ядер» (nuclear fusion).

Представим себя ненадолго физиками-ядерщиками

Практически всё вещество вокруг нас состоит из мельчайших частичек — атомов разных сортов. Сами атомы во многом похожи между собой: в сердцевине каждого атома есть ядро (оно составляет

99.9% всей массы атома и заряжено положительно) и «кружащиеся» вокруг него в эквивалентном количестве отрицательно заряженные электроны, численно зависящие от сорта выбранного нами атома — то есть в целом атомы в обычных условиях электрически не заряжены.

В отличие от какого-нибудь цельного ядра лесного ореха, ядро атома устроено сложнее: в его составе имеются два сорта частиц — незаряженных нейтронов и положительных протонов. По идее, из-за наличия положительного заряда у протонов ядро должно было бы быть немедленно «разорвано в клочья» силами кулоновского отталкивания (ведь именно так ведут себя в природе одноимённые заряды, разлетаясь друг от друга как можно дальше!) — однако им противостоят специальные, могучие ядерные силы, которые на расстояниях, соразмеримых с размером ядра, оказываются значительно сильнее кулоновского отталкивания. Так атом и существует: снаружи «порхают» электроны, а внутри ядра ведут какой-то свой «взаимный танец» протоны и нейтроны.

Тонкость же заключена в том, что отнюдь не все теоретически возможные комбинации протонов и нейтронов «способны жить в мире» — одну часть из них в принципе невозможно создать, а другая часть ведёт себя неустойчиво: с некоторой вероятностью такое «танцующее сообщество» спонтанно разваливается на осколки с высвобождением энергии — это ядра различных радиоактивных элементов.

А теперь ненадолго «переквалифицируемся» в астрофизиков

После прочтения предыдущего абзаца возникает резонный вопрос: откуда вообще взялось такое дикое разнообразие обычных и радиоактивных атомов, которые мы сейчас вокруг себя наблюдаем? Если говорить по-простому и пренебречь рядом тонкостей, то на взгляд современной науки после возникновения Вселенной в ней практически не было никаких иных атомов, кроме простейшего атома водорода (ядра-протона с одним электроном) и гелия.

Под действием гравитации из гигантских облаков водорода возникли первые звёзды, где началась реакция синтеза: если атомы водорода хорошенько сжать вместе и подогреть, то некоторым ядрам-протонам удаётся преодолеть электростатическое отталкивание и сойтись настолько, что ядерные силы заставляют их соединиться в одно ядро — и попутно выделяется энергия, за счёт коей звезда «и светит, и греет». Реакция синтеза ядер наиболее энергетически эффективна для ядер водорода, однако и более тяжёлые ядра «со скрипом» способны в неё вступать, синтезируя более массивные ядра (углерод, кислород и так далее).

Однако как только дело доходит до железа, «вечный праздник и веселье» немедленно заканчиваются: синтез железа уже не сопровождается выделением энергии — и все энергетические реакции в звезде затухают, а накопление ядер железа «убивает» достаточно массивную звезду — она взрывается как сверхновая, разбрасывая в пространство вокруг себя своё вещество (попутно отметим, что наше Солнце относится к третьему поколению звёзд, возникших из вещества, оставшегося после «смерти» первых двух). Именно в момент «смерти» звезды и рождаются более тяжёлые чем железо ядра, когда чудовищные по мощности и концентрации потоки нейтронов и протонов взаимодействуют со всем остальным веществом «умирающей» звезды. Здесь же возникают и тяжёлые радиоактивные элементы, «запасающие» в себе на время ту энергию, что потом выделится при их распаде.

Подведём итоги

  1. Итак, ядерная реакция вообще — это взаимодействие ядра с каким-либо иным ядром либо элементарной частицей, в результате чего состав и/или строение ядра может меняться.
  2. Термоядерная реакция (реакция синтеза) — вид ядерной реакции, в которой более лёгкие атомные ядра за счёт кинетической энергии их теплового движения объединяются в более тяжёлые.
  3. Ядерная реакция распада (реакция деления) — вид ядерной реакции, в которой ядро спонтанно или под действием внешней частицы распадается на два-три осколка (более лёгких ядра/частицы).

Чем ядерный взрыв отличается от термоядерного?

«Росатом» рассекретил видеокадры самого мощного ядерного взрыва в истории. Речь идёт об испытаниях советской «Царь-бомбы» мощностью 58 мегатонн.

Разработанная в СССР под руководством академика Курчатова ядерная бомба АН602 весила 27 тонн, была 8 метров в длину и 2 метра в диаметре. Конструктивно она была рассчитана на мощность 100 мегатонн, но, как впоследствии шутил генсек Никита Хрущёв, заряд уменьшили, «чтобы не побить все стёкла в Москве».

Взрыв был произведён 30 октября 1961 года на архипелаге Новая Земля в Северном Ледовитом океане. Ударная волна трижды обогнула земной шар. Огненный купол было видно на расстоянии до тысячи километров. Грибовидное облако поднялось на высоту 68 километров, а в диаметре разрослось до 90 километров.

Взорванная «Царь-бомба» (другие неофициальные названия — «Иван» и «Кузькина мать») была термоядерной, или водородной. Как и атомная бомба, это ядерное оружие. Оба его типа высвобождают огромное количество энергии из небольшого количества вещества, но у них разный принцип действия. В чём же отличие?

В ядерной (атомной) бомбе используется лавинообразная реакция распада ядер тяжёлых обогащённых элементов: урана-235 или плутония-239. Реакция носит цепной характер. За короткий промежуток времени в ограниченном объёме возникает большое количество осколков деления (электронов, нейтронов) с очень высокой энергией. Они превращают в сгусток высокотемпературной плазмы весь расщепляющийся материал и любое вещество рядом с ним. Сгусток мгновенно расширяется, и происходит взрыв, вызывающий мощную ударную волну. Кроме того, бомба высвобождает фрагменты ядерного распада, из которых состоят радиоактивные осадки.

В термоядерном взрывном устройстве иной принцип действия: там лёгкие ядра атомов объединяются, чтобы создать более тяжёлый элемент. Например, происходит слияние изотопов водорода дейтерия и трития. В результате сверхбыстрой реакции синтеза внутриядерная энергия превращается в тепловую. Как и в случае с ядерной бомбой, в ограниченном объёме возникает сгусток высокотемпературной плазмы, расширение которого приобретает характер взрыва.

При этом подрыв основного боевого заряда в водородной бомбе осуществляется встроенным маломощным ядерным устройством. Проще говоря, термоядерная бомба приводится в действие маленькой ядерной: та играет роль детонатора, чтобы запустить реакцию синтеза.

Если сравнивать мощность двух типов ядерного оружия, то термоядерная (водородная) бомба даёт намного большую выходную энергию, чем ядерная (атомная). Кроме того, нет теоретических ограничений на создание термоядерного взрывного устройства любой мощности. С другой стороны, эта бомба более сложна в изготовлении.

Бытует мнение, что при взрыве термоядерной бомбы ниже радиоактивное заражение окружающей местности. На самом деле поражающие факторы у двух типов оружия одинаковые. Действительно, реакция термоядерного синтеза сама по себе не способствует выпадению радиоактивных осадков. Но она, повторим, инициируется ядерным взрывным устройством, которое является «грязным». Поэтому водородная бомба генерирует не меньше осадков, чем обычная ядерная.

Теоретически рассматривалась возможность создания «чистого» термоядерного оружия, в котором для начала реакции синтеза не применялся бы ядерный детонатор. Но на практике эту идею никто реализовать не пытался.

Ядерные реакции: просто и понятно

Содержание:

Расщепление ядра атома и способность использовать ядерную энергию, как в созидательных (атомная энергетика), так и разрушительных (атомная бомба) целях стало, пожалуй, одним из самых значимых изобретений прошлого ХХ века. Ну а в основе всей той грозной силы, что таиться в недрах крохотного атома лежат ядерные реакции.

Читайте также  Что лучше тамифлю или ингавирин и чем они отличаются?

Что такое ядерные реакции

Под ядерными реакциями в физике понимается процесс взаимодействия атомного ядра с другим подобным ему ядром либо разными элементарными частичками, в результате чего происходит изменения состава и структуры ядра.

Немного истории ядерных реакций

Первая ядерная реакция в истории была сделана великим ученым Резерфордом в далеком 1919 году во время опытов по обнаружению протонов в продуктах распада ядер. Ученый бомбардировал атомы азота альфа частицами, и при соударении частиц происходила ядерная реакция.

А так выглядело уравнение этой ядерной реакции. Именно Резерфорду принадлежит заслуга открытия ядерных реакций.

Затем последовали многочисленные опыты ученых по осуществлению различных типов ядерных реакций, например, весьма интересной и значимой для науки была ядерная реакция, вызванная бомбардировкой атомных ядер нейтронами, которую провел выдающийся итальянский физик Э. Ферми. В частности Ферми обнаружил, что ядерные преобразования могут быть вызваны не только быстрыми нейтронами, но и медленными, который двигаются с тепловыми скоростями. К слову ядерные реакции, вызванные воздействием температуры, получили название термоядерных. Что же касается ядерных реакций под действием нейтронов, то они очень быстро получили свое развитие в науке, да еще какое, об этом читайте дальше.

Типичная формула ядерной реакции.

Какие ядерные реакции есть в физике

В целом известные на сегодняшний день ядерные реакции можно разделить на:

  • деление атомных ядер
  • термоядерные реакции

Ниже детально напишем о каждой из них.

Деление атомных ядер

Реакция деления атомных ядер подразумевает распад собственно ядра атома на две части. В 1939 году немецкими учеными О. Ганом и Ф. Штрассманом было открыто деления ядер атома урана, продолжая исследования своих ученых предшественников, они установили, что при бомбардировке урана нейтронами возникают элементы средней части периодической таблицы Менделеева, а именно радиоактивные изотопы бария, криптона и некоторых других элементов. К сожалению, эти знания первоначально были использованы в ужасающих, разрушительных целях, ведь началась вторая мировая война и немецкие, а с другой стороны, американские и советские ученые наперегонки занимались разработкой ядерного оружия (в основе которого была ядерная реакция урана), закончившейся печально известными «ядерными грибами» над японскими городами Хиросимой и Нагасаки.

Но вернемся к физике, ядерная реакция урана при расщеплении его ядра обладает просто таки колоссальной энергией, которую наука смогла поставить себе на службу. Как же происходит подобная ядерная реакция? Как мы написали выше, она происходит вследствие бомбардировки ядра атома урана нейтронами, от чего ядро раскалывается, при этом возникает огромная кинетическая энергия, порядка 200 МэВ. Но что самое интересное, в качестве продукта ядерной реакции деления ядра урана от столкновения с нейтроном, возникает несколько свободных новых нейтронов, которые, в свою очередь, сталкиваются с новыми ядрами, раскалывают их, и так далее. В результате нейтронов становится еще больше и еще больше ядер урана раскалывается от столкновений с ними – возникает самая настоящая цепная ядерная реакция.

Вот так она выглядит на схеме.

При этом коэффициент размножения нейтронов должен быть больше единицы, это необходимое условие ядерной реакции подобного вида. Иными словами, в каждом последующем поколении нейтронов, образованных после распада ядер, их должно быть больше, нежели в предыдущем.

Стоит заметить, что по похожему принципу ядерные реакции при бомбардировке могут проходить и во время деления ядер атомов некоторых других элементов, с теми нюансами, что ядра могут бомбардироваться самыми разными элементарными частичками, да и продукты таких ядерных реакций будут разниться, чтобы описать их более детально, нужна целая научная монография

Термоядерные реакции

В основе термоядерных реакций лежат реакции синтеза, то есть, по сути, происходит процесс обратный делению, ядра атомов не раскалываются на части, а наоборот сливаются друг с другом. При этом также происходит выделение большого количества энергии.

Термоядерные реакции, как это следует из самого из названия (термо – температура) могут протекать исключительно при очень высоких температурах. Ведь чтобы два ядра атомов слились, они должны приблизиться на очень близкое расстояние друг к другу, при этом преодолев электрическое отталкивание их положительных зарядов, такое возможно при существовании большой кинетической энергии, которая, в свою очередь, возможна при высоких температурах. Следует заметить, что на Солнце происходят термоядерные реакции водорода, впрочем, не только на нем, но и на других звездах, можно даже сказать, что именно она лежит в самой основе их природы всякой звезды.

Ядерные реакции, видео

И в завершение образовательное видео по теме нашей статьи, ядерным реакциям.

Ядерный распад и синтез

Согласно теории относительности, масса представляет собой особую форму энергии, о чем и свидетельствует известная формула Эйнштейна E = mc 2 . Из нее следует возможность преобразования массы в энергию и энергии в массу. И такие реакции на внутриатомном уровне вещества реально имеют место. В частности, часть массы атомного ядра может превращаться в энергию, и происходит это двумя путями. Во-первых, крупное ядро может распасться на несколько мелких — такой процесс называется реакцией распада. Во-вторых, несколько более мелких ядер могут объединиться в одно более крупное — это так называемая реакция синтеза. Реакции ядерного синтеза во Вселенной распространены очень широко — достаточно упомянуть, что именно из них черпают энергию звезды. Ядерный распад сегодня служит одним из основных источников энергии для человечества — он используется на атомных электростанциях. И при реакции распада, и при реакции синтеза совокупная масса продуктов реакции меньше совокупной массы реагентов. Эта-то разница в массе и преобразуется в энергию по формуле E = mc 2 .

Распад

В природе уран встречается в форме нескольких изотопов, один из которых — уран-235 ( 235 U) — самопроизвольно распадается с выделением энергии. В частности, при попадании достаточно быстрого нейтрона в ядро атома 235 U последнее распадается на два крупных куска и ряд мелких частиц, включая, обычно, два или три нейтрона. Однако сложив массы крупных фрагментов и элементарных частиц, мы недосчитаемся определенной массы по сравнению с массой исходного ядра до его распада под воздействием удара нейтрона. Эта-то недостающая масса и выделяется в виде энергии, распределенной среди получившихся продуктов распада — прежде всего, кинетической энергии (энергии движения). Стремительно движущиеся частицы разлетаются от места распада и сталкиваются с другими частицами вещества, разогревая их.

Они представляют собой стремительно разлетающиеся от места распада частицы, при этом далеко они не улетают, врезаясь в соседние атомы вещества и разогревая их. Таким образом, энергия, порождаемая ядерным распадом, преобразуется в теплоту окружающего вещества.

В уране, добываемом из природной урановой руды, изотопа урана-235 содержится всего 0,7% от общей массы урана — остальные 99,3% приходятся на долю относительно устойчивого (слабо радиоактивного) изотопа 238 U, который просто поглощает свободные нейтроны, не распадаясь под их воздействием. Поэтому для использования урана в качестве топлива в ядерных реакторах его нужно предварительно обогатить — то есть довести содержание радиоактивного изотопа 235 U до уровня не менее 5%.

Читайте также  Фасоль и бобы — чем отличаются эти растения?

После этого уран-235 в составе обогащенного природного урана в атомном реакторе распадается под воздействием бомбардировки нейтронами. В результате из одного ядра 235 U выделяется в среднем 2,5 новых нейтрона, каждый из которых вызывает распад еще 2,5 ядер, и запускается так называемая цепная реакция. Условием для продолжения незатухающей реакции распада урана-235 является превышение числа выделяемых распадающимися ядрами нейтронов числа нейтронов, покидающих урановый конгломерат; в этом случае реакция продолжается с выделением энергии.

В атомной бомбе реакция носит умышленно неконтролируемый характер, в результате чего за доли секунды распадается огромное число ядер 235 U и выделяется колоссальная по своей разрушительности взрывная энергия. В атомных реакторах, используемых в энергетике, реакцию распада необходимо строго контролировать с целью дозирования выделяемой энергии. Хорошим поглотителем нейтронов является кадмий — его-то обычно и используют для управления интенсивностью распада в реакторах АЭС. Кадмиевые стержни погружают в активную зону реактора до уровня, необходимого для снижения скорости выделения свободной энергии до технологически разумных пределов, а в случае падения энерговыделения ниже необходимого уровня частично выводят стержни из активной зоны реакции, после чего реакция распада интенсифицируется до необходимого уровня. Выделившаяся тепловая энергия затем в обычном порядке (посредством турбогенераторов) преобразуется в электрическую.

Синтез

Термоядерный синтез — реакция прямо противоположная реакции распада по своей сути: более мелкие ядра объединяются в более крупные. Самая распространенная во Вселенной реакция вообще — это реакция термоядерного синтеза ядер гелия из ядер водорода: она непрерывно протекает в недрах практически всех видимых звезд. В чистом виде она выглядит так: четыре ядра водорода (протона) образуют атом гелия (2 протона + 2 нейтрона) с выделением ряда других частиц. Как и в случае реакции распада атомного ядра совокупная масса образовавшихся частиц оказывается меньше массы исходного продукта (водорода) — она и выделяется в виде кинетической энергии частиц-продуктов реакции, за счет чего звезды и разогреваются.

В недрах звезд реакция термоядерного синтеза происходит не единовременно (когда сталкиваются 4 протона), а в три этапа. Сначала из двух протонов образуется ядро дейтерия (один протон и один нейтрон). Затем, после попадания в ядро дейтерия еще одного протона, образуется гелий-3 (два протона и один нейтрон) плюс другие частицы. И наконец, два ядра гелия-3 сталкиваются, образуя гелий-4, два протона, а также другие частицы. Однако по совокупности эта трехэтапная реакция дает чистый эффект образования из четырех протонов ядра гелия-4 с выделением энергии, уносимой быстрыми частицами, прежде всего фотонами (см. Эволюция звезд).

Естественная реакция термоядерного синтеза происходит в звездах; искусственная — в водородной бомбе. Увы, человек до сих пор не сумел найти средств для того, чтобы направить термоядерный синтез в управляемое русло и научиться получать за счет него энергию для использования в мирных целях. Однако ученые не теряют надежды на достижение положительных результатов в области получения «мирной и дешевой» термоядерной энергии уже в обозримом будущем — для этого главное научиться удерживать высокотемпературную плазму либо посредством лазерных лучей, либо посредством сверхмощных тороидальных электромагнитных полей (см. Критерий Лоусона).

Все, что нужно знать о термоядерном синтезе

​Ученые Принстонской лаборатории физики плазмы предложили идею самого долговечного устройства для ядерного синтеза, которое сможет работать более 60 лет. В данный момент это трудноосуществимая задача: ученые бьются над тем, чтобы заставить термоядерный реактор проработать в течение нескольких минут — а тут годы. Несмотря на сложность, строительство термоядерного реактора — одна из самых перспективных задач науки, которая может принести огромную пользу. Рассказываем, что нужно знать о термоядерном синтезе.

Не пугайтесь этого громоздкого словосочетания, на деле все довольно просто. Термоядерный синтез — это разновидность ядерной реакции.

В ходе ядерной реакции ядро атома взаимодействует либо с элементарной частицей, либо с ядром другого атома, за счет чего состав и строение ядра изменяются. Тяжелое атомное ядро может распасться на два-три более легких — это реакция деления. Существует также реакция синтеза: это когда два легких атомных ядра сливаются в одно тяжелое.

В отличие от ядерного деления, которое может проходить как самопроизвольно, так и вынужденно, ядерный синтез невозможен без подвода внешней энергии. Как известно, притягиваются противоположности, но вот атомные ядра заряжены положительно — поэтому они отталкиваются друг от друга. Эта ситуация называется кулоновским барьером. Чтобы преодолеть отталкивание, необходимо разогнать эти частицы до сумасшедших скоростей. Это можно осуществить при очень высокой температуре — порядка нескольких миллионов кельвинов. Именно такие реакции и называются термоядерными.

В ходе ядерных и термоядерных реакций выделяется огромное количество энергии, которую можно использовать в различных целях — можно создать мощнейшее оружие, а можно преобразовать ядерную энергию в электричество и снабдить им весь мир. Энергия распада ядра давно используется на атомных электростанциях. Но термоядерная энергетика выглядит перспективнее. При термоядерной реакции на каждый нуклон (так называются составляющие ядра, протоны и нейтроны) выделяется намного больше энергии, чем при ядерной реакции. К примеру, при делении ядра урана на один нуклон приходится 0,9 МэВ (мегаэлектронвольт), а при синтезе ядра гелия из ядер водорода выделяется энергия, равная 6 МэВ. Поэтому ученые учатся проводить термоядерные реакции.

Исследования термоядерного синтеза и строительство реакторов позволяют расширить высокотехнологичное производство, которое полезно и в других сферах науки и хай-тека.

Термоядерные реакции делят на самоподдерживающиеся, неуправляемые (используются в водородных бомбах) и управляемые (подходят для мирных целей).

Самоподдерживающиеся реакции проходят в недрах звезд. Однако на Земле нет условий для проведения таких реакций.

Неуправляемый, или взрывной термоядерный синтез люди проводят давно. В 1952 году в ходе операции «Иви Майк» американцы взорвали первое в мире термоядерное взрывное устройство, которое не имело практической ценности в качестве оружия. А в октябре 1961 года прошли испытания первой в мире термоядерной (водородной) бомбы («Царь-бомба», «Кузькина мать»), разработанной советскими учеными под руководством Игоря Курчатова. Это было самое мощное взрывное устройство за всю историю человечества: полная энергия взрыва, по разным данным, составляла от 57 до 58,6 мегатонн в тротиловом эквиваленте. Чтобы взорвать водородную бомбу, необходимо сначала в ходе обычного ядерного взрыва получить высокую температуру — лишь тогда атомные ядра начнут реагировать.

Мощность взрыва при неуправляемой ядерной реакции очень велика, кроме того, высока доля радиоактивного загрязнения. Поэтому чтобы использовать термоядерную энергию в мирных целях, необходимо научиться ею управлять.

Непонятно? Сейчас поясним.

Во-первых, атомные ядра. В ядерной энергетике используются изотопы — атомы, отличающиеся друг от друга количеством нейтронов и, соответственно, атомной массой. Изотоп водорода дейтерий (D) добывают из воды. Сверхтяжелый водород или тритий (Т) — радиоактивный изотоп водорода, который является побочным продуктом реакций распада, проводимых на обычных ядерных реакторах. Также в термоядерных реакциях используется легкий изотоп водорода — протий: это единственный стабильный элемент, не имеющий нейтронов в ядре. Гелий-3 содержится на Земле в ничтожно малых количествах, зато его очень много в лунном грунте (реголите): в 80-х гг НАСА разрабатывало план гипотетических установок по переработке реголита и выделению ценного изотопа. Зато на нашей планете широко распространен другой изотоп — бор-11. 80% бора на Земле — это необходимый ядерщикам изотоп.

Читайте также  Чем фиолетовый цвет отличается от сиреневого?

Во-вторых, очень высокая температура. Вещество, участвующее в термоядерной реакции, должно представлять собой практически полностью ионизированную плазму — это газ, в котором отдельно плавают свободные электроны и ионы различных зарядов. Чтобы превратить вещество в плазму, необходима температура 10 7 –10 8 К — это сотни миллионов градусов Цельсия! Такие сверхвысокие температуры можно получить путем создания в плазме электрических разрядов большой мощности.

Однако просто нагреть необходимые химические элементы нельзя. Любой реактор моментально испарится при таких температурах. Здесь требуется совершенно иной подход. На сегодняшний день удается удерживать плазму на ограниченной территории с помощью сверхмощных электрических магнитов. Но полноценно использовать получаемую в результате термоядерной реакции энергию пока не удается: даже под воздействием магнитного поля плазма растекается в пространстве.

В основных ядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применяться дейтерий (2H) и тритий (3H), а в более отдалённой перспективе гелий-3 (3He) и бор-11 (11B).

Вот как выглядят самые интересные реакции.

1) 2 D+ 3 T -> 4 He (3.5 MeV) + n (14.1 MeV) — реакция дейтерий-тритий.

2) 2 D+ 2 D -> 3 T (1.01 MeV) + p (3.02 MeV) 50%

2 D+ 2 D -> 3 He (0.82 MeV) + n (2.45 MeV) 50% — это так называемое монотопливо из дейтерия.

Реакции 1 и 2 чреваты нейтронным радиоактивным загрязнением. Поэтому наиболее перспективны «безнейтронные» реакции.

3) 2 D+ 3 He -> 4 He (3.6 MeV) + p (14.7 MeV) — дейтерий реагирует с гелием-3. Проблема в том, что гелий-3 чрезвычайно редок. Однако безнейтронный выход делает эту реакцию перспективной.

4) p+ 11 B -> 3 4 He + 8.7 MeV — бор-11 реагирует с протием, в результате получаются альфа-частицы, которые можно поглотить алюминиевой фольгой.

Естественным термоядерным реактором является звезда. В ней плазма удерживается под действием гравитации, а излучение поглощается — таким образом, ядро не остывает.

На Земле же термоядерные реакции можно провести лишь в специальных установках.

Импульсные системы. В таких системах дейтерий и тритий облучают сверхмощными лазерными лучи или пучками электронов/ионов. Такое облучение вызывает последовательность термоядерных микровзрывов. Однако такие системы невыгодно использовать в промышленных масштабах: на разгон атомов тратится намного больше энергии, чем получается в результате синтеза, так как не все разгоняемые атомы вступают в реакцию. Поэтому многие страны строят квазистационарные системы.

Квазистационарные системы. В таких реакторах плазма удерживается с помощью магнитного поля при низком давлении и высокой температуре. Существует три типа реакторов, основанных на различных конфигурациях магнитного поля. Это токамаки, стеллараторы (торсатроны) и зеркальные ловушки.

Токамак расшифровывается как «тороидальная камера с магнитными катушками». Это камера в виде «бублика» (тора), на которую намотаны катушки. Главной особенностью токамака является использование переменного электрического тока, который протекает через плазму, нагревает ее и, создавая вокруг себя магнитное поле, удерживает ее.

В стеллараторе (торсатроне) магнитное поле полностью удерживается с помощью магнитных катушек и, в отличие от токамака, может работать постоянно.

В зеркальных (открытых) ловушках используется принцип отражения. Камера с двух сторон закрыта магнитными «пробками», которые отражают плазму, удерживая ее в реакторе.

Долгое время зеркальные ловушки и токамаки боролись за первенство. Изначально концепция ловушки казалась более простой и потому более дешевой. В начале 60-х годов открытые ловушки обильно финансировались, однако нестабильность плазмы и неудачные попытки удержать ее магнитным полем заставляли усложнять эти установки — простые на вид конструкции превратились в адские машины, и добиться стабильного результата не выходило. Поэтому в 80-х годах на первый план вышли токамаки. В 1984 году был запущен европейский токамак JET, стоимость которого составила всего 180 млн долларов и параметры которого позволяли провести термоядерную реакцию. В СССР и Франции проектировали сверхпроводящие токамаки, которые почти не тратили энергию на работу магнитной системы.

Многие страны строят свои термоядерные реакторы. Свои экспериментальные реакторы есть в Казахстане, Китае, США и Японии. Курчатовский институт работает над реактором IGNITOR. Германия запустила термоядерный реактор-стелларатор Wendelstein 7-X.

Наиболее известен международный проект токамака ИТЭР (ITER, Международный экспериментальный термоядерный реактор) в исследовательском центре Кадараш (Франция). Его строительство предполагалось закончить в 2016 году, однако размеры необходимого финансового обеспечения выросли, а сроки экспериментов сдвинулись на 2025 год. В деятельности ИТЭР участвует Евросоюз, США, Китай, Индия, Япония, Южная Корея и Россия . Основную долю в финансировании играет ЕС (45%), остальные участники поставляют высокотехнологичное оборудование. В частности, Россия производит сверхпроводниковые материалы и кабели, радиолампы для нагрева плазмы (гиротроны) и предохранители для сверхпроводящих катушек, а также компоненты для сложнейшей детали реактора — первой стенки, которая должна выдержать электромагнитные силы, нейтронное излучение и излучение плазмы.

Современные установки токамак — не термоядерные реакторы, а исследовательские установки, в которых возможно лишь на некоторое время существование и сохранение плазмы. Дело в том, что ученые пока не научились удерживать плазму в реакторе на длительный срок.

На данный момент одним из самых больших достижений в области ядерного синтеза считается успех немецких ученых, которым удалось нагреть водородный газ до 80 миллионов градусов по Цельсию и поддерживать облако плазмы водорода в течение четверти секунды. А в Китае водородную плазму нагрели до 49.999 миллионов градусов и продержали ее 102 секунды. Российским ученым из ИЯФ (Институт ядерной физики имени Г. И. Будкера, Новосибирск) удалось добиться стабильного нагрева плазмы до десяти миллионов градусов Цельсия. Однако недавно американцы предложили способ удержания плазмы в течение 60 лет — и это внушает оптимизм.

Кроме того, ведутся споры относительно рентабельности термоядерного синтеза в промышленности. Неизвестно, покроют ли выгоды от производства электроэнергии затраты на термоядерный синтез. Предлагается экспериментировать с реакциями (например, отказаться от традиционной реакции дейтерий-тритий или монотоплива в пользу других реакций), конструкционными материалами — а то и отказаться от идеи промышленного термоядерного синтеза, используя лишь его для отдельных реакций в реакциях деления. Однако ученые все равно продолжают эксперименты.

Относительно. Тритий, который используется в термоядерных реакциях, радиоактивен. Кроме того, нейроны, выделяющиеся в результате синтеза, облучают конструкцию реактора. Сами элементы реактора покрываются радиоактивной пылью из-за воздействия плазмы.

Тем не менее, термоядерный реактор намного безопасней ядерного реактора в радиационном отношении. Радиоактивных веществ в реакторе относительно мало. Кроме того, сама конструкция реактора предполагает отсутствие «дыр», через которые может просочиться радиация. Вакуумная камера реактора должна быть герметичной, иначе реактор просто не сможет работать. При строительстве термоядерных реакторов применяются испытанные ядерной энергетикой материалы, а в помещениях поддерживается пониженное давление.

Александра Бартош/ автор статьи

Приветствую! Я являюсь руководителем данного проекта и занимаюсь его наполнением. Здесь я стараюсь собирать и публиковать максимально полный и интересный контент на темы связанные с обзором различий между двумя похожими предметами или брендами. Уверена вы найдете для себя немало полезной информации. С уважением, Александра Бартош.

Понравилась статья? Поделиться с друзьями:
DomKolgotok.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: