Векторная и скалярная величина — чем они отличаются?

Скалярные и векторные величины в физике и математике

Особенности скалярных величин

Скалярные величины характеризуются только одним параметром — числовым значением. Они разделяются на 2 вида:

  • Чистые скаляры. Характеризуются числовым значением, не находящимся в зависимости от осей отсчета — линий пересечения плоских поверхностей в единой системе координат.
  • Псевдоскаляры. Находятся при помощи расчета числа, знак которого зависит от положительного направления осей в системе координат.

В физике в список скалярных величин входят:

  • Масса — определяет величину материи и ее гравитационные свойства. Измеряется в килограммах и обозначается буквой латинского алфавита m.
  • Температура — средняя кинетическая энергия физического тела. Выражается в кельвинах или градусах Цельсия.
  • Работа — мера действия силы на физическое тело или систему тел. Измеряется в Джоулях и обозначается латинской буквой A.
  • Длина — величина, определяющая дистанцию между 2 концами тела в продольном направлении. Исчисляется в метрах. Особым видом длины является путь — скаляр, выражающий расстояние между начальным и конечным положением объекта, осуществляющего перемещение по заданной траектории.
  • Время — продолжительность действия или события. Рассчитывается в секундах.
  • Период — время совершения 1 полного колебания. Обозначается символом T и измеряется в секундах.
  • Частота — величина, обратная периоду. Определяет количество полных колебаний в единицу времени. Рассчитывается в Герцах.
  • Объем — скаляр, обозначающий размер пространства, ограниченного поверхностями со всех сторон. Измеряется в м 3 .
  • Напряжение — измеряет изменение потенциальной энергии тела, приходящейся на единицу заряда. Обозначается буквой U и рассчитывается в Вольтах.
  • Сила тока — скаляр, показывающий число электрических зарядов, проходящих через сечение проводника в единицу времени. Обозначается символом I и рассчитывается в Амперах.
  • Энергия — обозначает способность тела осуществлять работу.

Если скаляры выражают одно единственное свойство физического тела, то они называются однородными. Величины, описывающие несколько свойств объекта, именуются разнородными. Однородные скаляры сравнимы: они либо равны, либо одна из них больше или меньше другой. Но скалярные величины разного рода не могут сравниваться друг с другом.

Определение положительного скаляра и его измерения

Понятие положительной скалярной величины и ее измерения позволяет сравнивать между собой однородные скаляры. Положительная скалярная величина способна принимать значения строго выше 0. Она обозначается знаком «+». Если величина может принимать значения меньше 0, то она называется отрицательной и обозначается символом «-«. Большинство скаляров могут быть только положительными. Для их расчета используют единицы измерения — фиксированного размера объекта.

Чтобы получить скалярную величину, достаточно умножить ее числовое значение на ее единицу измерения. Для структуризации и стандартизации вычислений физических параметров тела была разработана Международная система СИ. Она устанавливает единицы измерения для каждой величины. Во время проведения расчетов скалярных величин применяют алгебраические действия — сложение, вычитание, деление и умножение (отдельный подвид — возведение в степень).

Особенности векторных величин

Их определение: «В физике векторными величинами называются свойства материи, характеризующиеся несколькими параметрами: модулем и направлением». Модулем вектора будет являться числовое значение величины, никогда не принимающее отрицательных значений. Он обозначается символом «||». Для обозначения направления используется стрелка, располагающаяся над символом вектора.

В физике и математике примерами векторных величин являются:

  • Сила — мера взаимодействия физических веществ. Обозначается латинской буквой F и измеряется в Ньютонах. Три закона Исаака Ньютона составляют основу классической механики. С их помощью можно определить массу тела и его ускорение.
  • Скорость — расстояние, пройденное материей за определенный временной промежуток. Маркируется символом V и рассчитывается в м/с. Скорость используется для определения пути и времени движения предмета при помощи формулы: S = V * t. Скорость, с которой тело движется по окружности, называется линейной.
  • Ускорение — величина, показывающая изменение показателей скорости физического тела. Ускорение свободного падения действует на все тела, придавая им силу тяжести. Оно направлено к ядру Земли и равняется 9,8 м/с 2
  • Импульс — характеризует величину движения тела. Маркируется буквой латинского алфавита p и рассчитывается в кг*м/с. С помощью этой величины человек может определить массу физического тела и скорость ее передвижения.

На графиках функции векторные величины изображаются в виде прямой линии, имеющей направление и свои собственные координаты в заданном масштабе.

Свойства векторов

Вектор — математический элемент, представляющий собой прямой отрезок с направлением. Он обозначается либо 2 заглавными латинскими буквами, либо одной прописной. Длиной вектора является его модуль. Если длина вектора равняется 0, то он называется нулевым. Вектор, имеющий длину 1 см, именуется единичным. Длина ненулевого вектора выражается в виде расстояния между началом и концом направленного отрезка. Проекцией вектора на ось является строго положительный отрезок, сонаправленный с исходной осью. Свойства проекции:

  • Произведение вектора на косинус между осью и направленным отрезком равен проекции вектора.
  • Проекция на ось принимает значения меньше 0, если отрезок с осью образует тупой угол.
  • Проекция на ось принимает значение больше 0, если отрезок с осью образует острый угол.

Коллинеарные векторы — отрезки, располагающиеся либо на одной прямой, либо на параллельных прямых. Нулевой вектор коллинеарен всегда. Если коллинеарные векторы направлены в одну сторону, то они называются сонаправленными. Если отрезки направлены в диаметрально противоположные стороны, то они называются противоположно направленными. Коллинеарные векторы являются равными, если они одинаковы по модулю и направлению.

Построение отрезков с направлением на плоскости осуществляется при помощи его координат для осей абсцисса и ордината. Для изображения направленного отрезка необходимо построить точки, координаты которых соответствуют началу и концу вектора, и соединить их.

С векторами также можно производить операции сложения, деления, вычитания и умножения. Чтобы сложить два вектора, необходимо от произвольной точки на плоскости отложить первый направленный отрезок и от него отложить второй вектор. Отрезок, соединяющий начало первого вектора и конец второго, будет считаться их суммой. Этот способ сложения именуется методом треугольника.

Вторым способом нахождения суммы векторов является метод параллелограмма. От произвольной точки откладываются оба направленных отрезка. Полученный рисунок нужно достроить до параллелограмма. Диагональ фигуры будет являться суммой векторов.

Для осуществления вычитания необходимо отложить от произвольной точки первый вектор. От полученного отрезка откладывается следующий вектор. Второй отрезок нужно направить в противоположную сторону. Линия, соединяющая отрезки, будет являться разностью векторов.

С векторами также можно проводить операцию умножения. Произведение длин направленных отрезков на косинус угла между ними называется скалярным. В результате вычислений получается число — скаляр. Скалярное произведение равно 0 в случае, когда отрезки пересекаются под углом 90°. Зная скалярное произведение, человек сможет найти косинус угла между построенными векторами.

Полученные в результате выполнения алгебраических операций выражения применяются для исследования перемещения тел вокруг оси вращения и изучения элементов высшей математики. Также направленные отрезки нашли широкое применение в геометрии и астрономии.

Физические величины и параметры, скалярные и векторные величины, скалярные и векторные поля

Скалярные и векторные физические величины

Читайте также  Маленькие и большие бананы: польза и отличия

Одной из основных целей физики является установление закономерностей наблюдаемых явлений. Для этого при рассмотрении различных случаев вводятся характеристики, определяющие течение физических явлений, а также свойства и состояние веществ и сред. Из этих характеристик можно выделить собственно физические величины и параметрические величины. Последние определяются так называемыми параметрами или постоянными.

Под собственно величинами подразумевают те характеристики явлений, которые определяют явления и процессы и могут существовать независимо от состояния среды и условий.

К таким, например, относятся электрический заряд, напряженность поля, индукция, электрический ток и т. д. Среда и условия, в которых протекают явления, определяемые данными величинами, могут изменить эти величины в основном только количественно.

Под параметрами будем подразумевать такие характеристики явлений, которые определяют свойства сред и веществ и влияют на соотношение между собственно величинами. Они не могут существовать самостоятельно и проявляются лишь в их действии на собственно величины.

К параметрам относятся, например, электрическая и магнитная постоянные, удельное электрическое сопротивление, коэрцитивная сила, остаточная индукция, параметры электрических цепей (сопротивление, проводимость, емкость, индуктивность на единицу длины или объема в данном устройстве) и др.

Значения параметров обычно зависят от условий, в которых протекает данное явление (от температуры, давления, влажности и т. п.), но при постоянстве этих условий параметры сохраняют свои значения неизменными и поэтому называются также постоянными.

Количественные (числовые) выражения величин или параметров называются их значениями.

Физические величины могут определяться двояко: одни — только числовым значением, а другие — как числовым значением, так и направлением (положением) в пространстве.

К первым относятся такие величины как масса, температура, сила электрического тока, электрический заряд, работа и т. д. Эти величины называются скалярными (или скалярами). Скалярная величина может быть выражена только в виде одного именованного числового значения.

Ко вторым величинам, называемым векторными, относятся длина, площадь, сила, скорость, ускорение и т. д. Длина вектора в определенном масштабе равна числовому значению физической величины, которую данный вектор представляет, а стрелка показывает направление действия ее в пространстве.

Скалярные величины и абсолютные значения векторных величин обычно обозначаются прописными буквами латинского алфавита, векторные же величины пишутся с черточкой или стрелкой над символом величины.

Скалярные и векторные поля

Поля в зависимости от вида физического явления, характеризующего поле, бывают скалярные или векторные.

В математическом представлении поле — это пространство, каждую точку которого можно охарактеризовать числовыми значениями.

Такое понятие поля может быть применено и при рассмотрении физических явлений. Тогда любое поле можно представлять как пространство, в каждой точке которого обнаруживается обусловленное данным явлением (источником поля) воздействие на некоторую физическую величину. Полю в таком случае присваивают название этой величины.

Так, нагретое тело, излучающее тепло, окружено полем, точки которого характеризуются температурой, поэтому такое поле называется температурным полем. Поле, окружающее тело, заряженное электричеством, в котором обнаруживается силовое воздействие на неподвижные электрические заряды, называется электрическим полем и т. п.

В соответствии с этим температурное поле вокруг нагретого тела, поскольку температура может быть представлена только как скаляр, является скалярным полем, а электрическое поле, характеризующееся действующими на заряды силами, имеющими определенное направление в пространстве, называется векторным.

Примеры скалярных и векторных полей

В качестве характерного примера скалярного поля можно привести температурное поле вокруг нагретого тела. Чтобы оценить количественно такое поле, у отдельных точек картины этого поля можно поставить цифры, равные температуре в этих точках.

Однако такой способ представления поля неудобен. Поэтому обычно поступают так: предполагают, что точки пространства, в которых температура одинакова, принадлежат одной поверхности. Подобные поверхности в данном случае можно назвать равнотемпературными. Линии, получающиеся при пересечении такой поверхности другой поверхностью, называются равнотемпературными линиями, или изотермами.

Обычно, если пользуются такими графиками, изотермы проводят через равные интервалы температуры (например, через каждые 100 град). Тогда густота линий у данной точки дает наглядное представление о характере поля (скорости изменения температуры).

Пример скалярного поля (результаты расчета освещенности в программе Dialux):

В качестве примеров скалярного поля можно еще привести гравитационное поле (поле силы притяжения Земли), а также электростатическое поле вокруг тела, которому сообщен электрический заряд, если каждую точку этих полей характеризовать скалярной величиной, называющейся потенциалом.

Для образования любого поля приходится затрачивать некоторое количество энергии. Эта энергия не исчезает, а накапливается в поле, распределяясь во всем его объеме. Она является потенциальной и может быть возвращена полем в виде работы сил поля при перемещении в нем масс или заряженных тел. Поэтому поле может быть оценено также потенциальной характеристикой, определяющей возможность поля совершать работу.

Поскольку обычно энергия в объеме поля распределена неравномерно, эту характеристику относят к отдельным точкам поля. Величину, представляющую собой потенциальную характеристику точек поля, называют потенциалом, или потенциальной функцией.

В применении к электростатическому полю наибольшее распространение получил термин «потенциал», а к магнитному полю — «потенциальная функция». Иногда последняя называется также энергетической функцией.

Потенциал отличается такой особенностью: значение его в поле непрерывно, без скачков, изменяется от точки к точке.

Потенциал точки поля определяют величиной работы, которую совершают силы поля при перемещении единичной массы или единичного заряда из данной точки в точку, где данное поле отсутствует (данная характеристика поля равна нулю), или которую нужно затратить, действуя против сил поля, чтобы перенести единичную массу или заряд в данную точку поля из точки, где действие данного поля равно нулю.

Работа — скалярная величина, поэтому и потенциал является скаляром.

Поля, точки которых могут быть охарактеризованы значениями потенциала, называются потенциальными полями. Поскольку все потенциальные поля являются скалярными, то термины «потенциальный» и «скалярный» синонимичны.

Как и в случае рассмотренного выше температурного поля, в любом потенциальном поле можно найти много точек с одинаковыми потенциалами. Поверхности, на которых располагаются точки равного потенциала, называются эквипотенциальными, а пересечение их с плоскостью чертежа — эквипотенциальными линиями, или эквипотенциалями.

В векторном поле величина, характеризующая это поле в отдельных точках, может быть представлена вектором, начало которого помещается в данную точку. Для наглядного изображения векторного поля прибегают к построению линий, которые проводят так, чтобы касательная в каждой ее точке сов падала с вектором, характеризующим эту точку.

Линии поля, проведенные одна от другой на определенном расстоянии, дают представление о характере распределения поля в пространстве (в области, где линии гуще, значение векторной величины больше, а где линии реже, значение ее меньше).

Безвихревые и вихревые поля

Поля различаются не только по виду физических величин, которые определяют их, но и по характеру, т. е. могут быть либо безвихревыми, состоящими из несмешивающихся параллельных струй (иногда эти поля, называют ламинарными, т. е. слоистыми), либо вихревыми (турбулентными).

Одно и то же безвихревое поле в зависимости от характеризующих его величин может быть как скалярно-потенциальным, так и векторно-безвихревым.

Читайте также  Чем отличается тмин и зиры?

Скалярно-потенциальными будут электростатическое, магнитное и гравитационное поля, если их определять по энергии, распределенной в поле. Однако то же поле (электростатическое, магнитное, гравитационное) является векторным, если характеризуется силами, действующими в нем.

Безвихревое, или потенциальное, поле всегда обладает скалярным потенциалом. Важной особенностью функции скалярного потенциала является ее непрерывность.

Примером безвихревого поля в области электрических явлений является электростатическое поле. Примером вихревого поля является магнитное поле в толще проводника с током.

Существуют так называемые смешанные векторные поля. Примером смешанного поля является магнитное поле вне проводников с током (магнитное поле внутри этих проводников представляет собой вихревое поле).

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Чем отличается векторная от скалярной

В физике выделяют 2 категории величин — векторные и скалярные. Что представляют собой те и другие?

Что представляет собой векторная величина?

Под векторной принято понимать величину, имеющую 2 основные характеристики:

Так, два вектора признаются равными, если модули, а также направления обоих совпадают. Записывается рассматриваемая величина чаще всего как буква, над которой прорисовывается стрелка.

В числе самых распространенных величин соответствующего типа — скорость, сила, а также, например, ускорение.

С геометрической точки зрения вектор может представлять собой направленный отрезок, длина которого соотносится с его модулем.

Если рассматривать векторную величину обособленно от направления, то ее принципиально можно измерить. Правда, это будет, так или иначе, частичная характеристика соответствующей величины. Полная — достигается только в случае ее дополнения параметрами направленного отрезка.

Что представляет собой скалярная величина?

Под скалярной принято понимать величину, которая имеет только 1 характеристику, а именно — численное значение. При этом рассматриваемая величина может принимать положительное или же отрицательное значение.

К распространенным скалярным величинам можно отнести массу, частоту, напряжение, температуру. С ними возможно производить различные математические действия — сложение, вычитание, умножение, деление.

Направление (как характеристика) не свойственно для скалярных величин.

Сравнение

Главное отличие векторной величины от скалярной заключается в том, что у первой ключевые характеристики — модуль и направление, у второй — численное значение. Стоит отметить, что векторную величину, как и скалярную, принципиально можно измерить, правда, в этом случае ее характеристики определятся только частично, поскольку будет недоставать направления.

Определив,в чем разница между векторной и скалярной величиной, отразим выводы в небольшой таблице.

Primary tabs

Forums:

привожу определения из учебника Запрягаева С.А. =

Скаляр

Скаляром называется величина , заданная численным значением.

Вектор

Вектором называется величина заданная численным значением и направлением в пространстве.

далее – вывод и ответ на вопрос –

Чем отличается вектор от скаляра.

Вектор , в отличии от скаляра – помимо численного значения задаётся ещё и направлением в пространстве.

В физике существует несколько категорий величин: векторные и скалярные.

Что такое векторная величина?

Векторная величина имеет две основные характеристики: направление и модуль. Два вектора будут одинаковыми, если их значение по модулю и направление совпадают. Для обозначения векторной величины чаще всего используют буквы, над которыми отображается стрелочка. В качестве примера векторной величины можно привести силу, скорость или ускорение.

Для того, чтобы понять сущность векторной величины, следует рассмотреть ее с геометрической точки зрения. Вектор представляет собой отрезок, имеющий направление. Длина такого отрезка соотносится со значением его модуля. Физическим примером векторной величины является смещение материальной точки, перемещающейся в пространстве. Такие параметры, как ускорение этой точки, скорость и действующие на нее силы, электромагнитного поля тоже будут отображаться векторными величинами.

Если рассматривать векторную величину независимо от направления, то такой отрезок можно измерить. Но, полученный результат будет отображать только лишь частичные характеристики величины. Для ее полного измерения следует дополнить величину другими параметрами направленного отрезка.

В векторной алгебре существует понятие нулевого вектора. Под этим понятием подразумевается точка. Что касается направления нулевого вектора, то оно считается неопределенным. Для обозначения нулевого вектора используется арифметический нуль, набранный полужирным шрифтом.

Что такое скалярная величина?

В отличие от вектора, скалярная величина обладает только лишь одним параметром – это ее численное значение. Стоит отметить, что анализируемая величина может иметь как положительное численное значение, так и отрицательное.

В качестве примера можно привести массу, напряжение, частоту или температуру. С такими величинами можно выполнять различные арифметические действия: сложение, деление, вычитание, умножение. Для скалярной величины такая характеристика, как направление, не свойственна.

Скалярная величина измеряется числовым значением, поэтому ее можно отображать на координатной оси. Например, очень часто строят ось пройденного пути, температуры или времени.

Основные отличия между скалярными и векторными величинами

Из описаний, приведенных выше, видно, что главное отличие векторных величин от скалярных заключается в их характеристиках. У векторной величины есть направление и модуль, а у скалярной только численное значение. Безусловно, векторную величину, как и скалярную, можно измерить, но такая характеристика не будет полной, так как отсутствует направление.

Для того, чтобы более четко представить отличие скалярной величины от векторной, следует привести пример. Для этого возьмем такую область знаний, как климатология. Если сказать, что ветер дует со скоростью 8 метров в секунду, то будет введена скалярная величина. Но, если сказать, что северный ветер дует со скоростью 8 метров в секунду, то речь пойдет о векторном значении.

Векторы играют огромную роль в современной математике, а также во многих сферах механики и физики. Большинство физических величин может быть представлено в виде векторов. Это позволяет обобщить и существенно упростить используемые формулы и результаты. Часто векторные значения и векторы отождествляются друг с другом. Например, в физике можно услышать, что скорость или сила является вектором.

Некоторые формулы векторной алгебры используются в таких областях науки, как:

  1. Сопромат.
  2. Кинематика.
  3. Облучение и электрическое освещение.
  4. Прикладная механика.
  5. Гидравлика.
  6. Электрические машины.
  7. Теоретическая механика.
  8. Физика.

Четкое осознание разницы между векторной и скалярной величиной позволит специалистам решать сложные задачи и более подробно характеризовать используемые данные.

Скалярные и векторные величины

Скалярная величина – это физическая величина, которая имеет только одну характеристику – численное значение.

Скалярная величина может быть положительной или отрицательной.

Примеры скалярных величин: температура, масса, объем, время, плотность. Математические действия со скалярными величинами – это алгебраические действия.

Векторная величина – это физическая величина, которая имеет две характеристики:

1) численное значение, которое всегда положительно (модуль вектора);

Примеры векторных физических величин: скорость, ускорение, сила.

Векторная величина обозначается латинской буквой и стрелкой над этой буквой. Например:

— вектор скорости обозначается символом ,

— вектор ускорения обозначается символом ,

— вектор силы обозначается символом .

Модуль вектора обозначается так:

или — модуль вектора ,

или — модуль вектора ,

Читайте также  Чем отличается мука высшего сорта от первого

или — модуль вектора ,

На рисунке (графически) вектор изображается направленным отрезком прямой линии. Модуль вектора равен длине направленного отрезка в заданном масштабе.

Действия с векторами

Математические действия с векторными величинами – это геометрические действия.

Сравнение векторов

Равные векторы. Два вектора равны, если они имеют:

Противоположные векторы. Два вектора противоположны, если они имеют:

Сложение векторов

Мы можем сложить два вектора геометрически по правилу параллелограмма и по правилу треугольника.

Пусть заданы два вектора и (см. рис.). Найдем сумму этих векторов + = . Величины и — это составляющие векторы, вектор — это результирующий вектор.

Правило параллелограмма для сложения двух векторов:

1. Нарисуем вектор .

2. Нарисуем вектор так, что его начало совпадает с началом вектора ; угол между векторами равен (см. рисунок).

3. Через конец вектора проведем прямую линию, параллельную вектору .

4. Через конец вектора проведем прямую линию, параллельную вектору .

Мы построили параллелограмм. Стороны этого параллелограмма – составляющие векторы и .

5. Проведем диагональ параллелограмма из общей точки начала вектора и начала вектора .

6. Модуль результирующего вектора равен длине диагонали параллелограмма и определяется по формуле:

;

начало вектора совпадает с началом вектора и началом вектора (направление вектора показано на рисунке).

Правило треугольника для сложения двух векторов:

1. Нарисуем составляющие векторы и так, что начало вектора совпадает с концом вектора . При этом угол между векторами равен .

2. Результирующий вектор направлен так, что его начало совпадает с началом вектора , а конец совпадает с концом вектора .

3. Модуль результирующего вектора находим по формуле:

Вычитание векторов

Вычитание векторов – это действие, обратное сложению:

Найти разность вектора и вектора — это тоже самое, что найти сумму вектора и вектора , противоположного вектору . Мы можем найти вектор разности геометрически по правилу параллелограмма или по правилу треугольника (см. рис.).

Какая величина является векторной, а какая скалярной? Просто о сложном

Пугающие школьника два слова — вектор и скаляр — на самом деле не являются страшными. Если подойти к теме с интересом, то все можно понять. В данной статье рассмотрим, какая величина является векторной, а какая скалярной. Точнее, приведем примеры. Каждый ученик, наверное, обращал внимание, что в физике некоторые величины обозначаются не только символом, но и стрелкой сверху. Что они обозначают? Об этом будет сказано ниже. Постараемся разобраться, чем отличается векторная величина от скалярной.

Примеры векторов. Как они обозначаются

Что подразумевается под вектором? То, что характеризует движение. Не важно, в пространстве или на плоскости. Какая величина является векторной вообще? Например, летит самолет с определенной скоростью на какой-то высоте, имеет конкретную массу, начал движение из аэропорта с нужным ускорением. Что относится к движению самолета? Что заставило его лететь? Конечно, ускорение, скорость. Векторные величины из курса физики являются наглядными примерами. Говоря прямо, векторная величина связана с движением, перемещением.

Вода тоже движется с определенной скоростью с высоты горы. Видите? Движение осуществляется за счет не объема или массы, а именно скорости. Теннисист дает возможность мячику двигаться при помощи ракетки. Он задает ускорение. К слову сказать, приложенная в данном случае сила также является векторной величиной. Потому что она получается вследствие заданных скоростей и ускорений. Сила способна также меняться, осуществлять конкретные действия. Ветер, который колышет листья на деревьях, тоже можно считать примером. Так как имеется скорость.

Положительные и отрицательные величины

Векторной величиной называется величина, которая имеет направление в окружающем пространстве и модуль. Снова появилось пугающее слово, на этот раз модуль. Представьте, что нужно решить задачку, где будет фиксироваться отрицательное значение ускорения. В природе отрицательных значений, казалось бы, не существует. Как скорость может быть отрицательной?

У вектора есть такое понятие. Это касается, например, сил, которые приложены к телу, но имеют разные направления. Вспомните третий закон Ньютона, где действие равно противодействию. Ребята перетягивают канат. Одна команда в синих футболках, вторая — в желтых. Вторые оказываются сильнее. Допустим, что вектор их силы направлен положительно. В то же время у первых не получается натянуть канат, но пытаются. Возникает противодействующая сила.

Векторная или скалярная величина?

Поговорим о том, чем отличается векторная величина от скалярной. Какой параметр не имеет никакого направления, но имеет свое значение? Перечислим некоторые скалярные величины ниже:

  • время (секунда, минута, день, год);
  • масса (грамм, килограмм, тонна);
  • длина, расстояние (сантиметр, метр, километр);
  • площадь и объем (метр квадратный и кубический);
  • температура (градус Цельсия, Фаренгейт);
  • доза радиации, излучения (бар, рентген);
  • уровень шума, вибрации (децибел).

Имеют ли все они направление? Нет. Какая величина является векторной, а какая скалярной, можно показать только наглядными примерами. В физике есть такие понятия не только в разделе «Механика, динамика и кинематика», а так же в параграфе «Электричество и магнетизм». Сила Лоренца, индукция, магнитное поле — все это так же векторные величины.

Вектор и скаляр в формулах

В учебниках по физике часто встречаются формулы, в которых есть стрелочка сверху. Вспомните второй закон Ньютона. Сила («F» со стрелочкой сверху) равна произведению массы («m») и ускорения («a» со стрелочкой сверху). Как говорилось выше, сила и ускорение являются величинами векторными, а вот масса — скалярной.

К сожалению, не во всех изданиях есть обозначение этих величин. Наверное, сделано это для упрощения, чтобы школьников не вводить в заблуждение. Лучше всего покупать те книги и справочники, в которых обозначены векторы в формулах.

То, какая величина является векторной, покажет иллюстрация. Рекомендуется обращать внимание на картинки и схемы на уроках физики. Векторные величины имеют направление. Куда направлена сила тяжести? Конечно же, вниз. Значит, стрелочка будет показана в том же направлении.

В технических вузах изучают физику углубленно. В рамках многих дисциплин преподаватели рассказывают о том, какие величины являются скалярными и векторными. Такие знания требуются в сферах: строительство, транспорт, естественные науки.

Александра Бартош/ автор статьи

Приветствую! Я являюсь руководителем данного проекта и занимаюсь его наполнением. Здесь я стараюсь собирать и публиковать максимально полный и интересный контент на темы связанные с обзором различий между двумя похожими предметами или брендами. Уверена вы найдете для себя немало полезной информации. С уважением, Александра Бартош.

Понравилась статья? Поделиться с друзьями:
DomKolgotok.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: